The efficiency of Gas-Assisted Etching (GAE) and depositions performed using the Focused Ion Beam (FIB) technique is subject to numerous factors. Besides the wellknown primary parameters recommended by the FIB manufacturer (pixel spacing, dwell time, and gas pressures), certain secondary factors can also have a pronounced effect on the quality of these gas-assisted FIB operations. The position of the gas delivery nozzle during XeF2 mills on silicon is examined and was found to affect both the milling speed and the texture on the floor of the FIB trench. Limitations arising from the memory capacity of the FIB computer can also influence process times and trench quality. Exposing the FIB vacuum chamber to TMCTS during SiO2 depositions is found to temporarily impede the performance of subsequent tungsten depositions, especially following heavy or prolonged TMCTS exposure. A delay period may be required to achieve optimal tungsten depositions following TMCTS use. Finally, the focusing conditions of the ion beam are found to have a significant impact on the resistance of FIB-deposited metal films. This effect is attributed to partial milling of the deposition film due to the intense current density of the collimated ion beam. The resistances of metal depositions performed with intentionally defocused ion beams were found to be lower than those performed with focused beams.

This content is only available as a PDF.
You do not currently have access to this content.