This paper describes improvements in backside deprocessing of CMOS (Complimentary Metal Oxide Semiconductor) SOI (Silicon On Insulator) integrated circuits. The deprocessing techniques described here have been adapted from a previous research publication on backside deprocessing of bulk CMOS integrated circuits [1]. The focus of these improvements was to provide a repeatable and reliable methodology of deprocessing CMOS devices from the backside. We describe a repeatable and efficient technique to deprocess flip chip packaged devices and unpackaged die from the backside. While this technique has been demonstrated on SOI and bulk devices, this paper will focus on the latest SOI technology. The technique is useful for quick and easy access to the transistor level while preserving the metal interconnects for further analysis. It is also useful for deprocessing already thinned or polished die without removing them from the package. Removing a thin die from a package is very difficult and could potentially damage the device. This is especially beneficial when performing physical failure analysis of samples that have been back thinned for the purpose of fault isolation and defect localization techniques such as: LIVA (Laser Induced Voltage Alteration), TIVA (Thermally Induce Voltage Alteration), SDL [2] (Soft Defect Localization), and TRE (Time Resolved Emission) analysis. An important fundamental advantage of deprocessing SOI devices is that the BOX (Buried Oxide) layer acts as a chemical etch stop when etching the backside or bulk silicon. This leaves the transistor active silicon intact for analysis. Further delayering allows for the inspection of the active silicon, gate oxide, silicide, spacers, and poly. After deprocessing the transistor level, the metal layers are still intact and, in most cases, still electrically connected to the outside world. This can provide additional failure analysis opportunities.

This content is only available as a PDF.
You do not currently have access to this content.