A novel technique for three-dimensional structural and elemental analyses using a dedicated focused ion beam (FIB) and scanning transmission electron microscope (STEM) has been developed. The system employs an FIB-STEM compatible sample holder with sample stage rotation mechanism. A piece of sample (micro sample) is extracted from the area to be characterized by the micro-sampling technique [1-3]. The micro sample is then transferred onto the tip of the stage (needle stage) and bonded by FIB assisted metal deposition. STEM observation of the micro sample is carried out after trimming the sample into a micro-pillar 2-5 micron squared in cross-section and 10 -15 micron in length (micro-pillar sample). High angle annular dark field (HAADF) STEM, bright field STEM and secondary electron microscopy (SEM) images are obtained at 200kV resulting in threedimensional and cross sectional representations of the microsample. The geometry of the sample and the needle stage allows observation of the sample from all directions. The specific site can be located for further FIB milling whenever it is required. Since the operator can choose materials for the needle stage, the geometry of the original specimen is not a limiting factor for quantitative energy dispersive X-ray (EDX) analysis.

This content is only available as a PDF.
You do not currently have access to this content.