Abstract

Advances in FIB (focused ion beam) chemical processes and in the Ga (gallium) beam profile are discussed; these advances are necessary for the successful failure analysis, circuit edit and design verification of advanced, sub-0.13µm Cu devices. Included in this article are: a novel FIB method (CoppeRx.) for smoothly milling thick, large grained Cu lines; H2O and O2 processes for cleanly cutting thin, smaller grained Cu lines, thereby forming electrically open interconnects; a XeF2 GAE (gas assisted etching) process for etching low k, CVD dielectrics such as F and C doped SiO2; H2O and XeF2 GAE processes for etching low k, spin-on, organic dielectrics such as SiLK.; a recently developed recipe for the deposition of SiO2 based material with intermediate resistivity (10+6 µohm·cm) which is useful in the design verification of frequency sensitive, high speed analog and SOC (system on chip) circuits; an improved, more Gaussian Ga beam with less current density in the beam tails (VisION. column) which provides higher resolution, real time images needed for end-point detection on sub 0.13µm features during milling.

This content is only available as a PDF.
You do not currently have access to this content.