Several considerations related to the implementation of the thermal laser stimulation method (OBIRCH, TIVA) in a failure analysis laboratory will be discussed. At the CNES (French Space Agency), we implemented this method on a dual system which includes an emission microscope and a laser-scanning microscope. The amplifier used for amplifying the weak voltage or current variations caused by thermal laser stimulation was shown to be a key factor. The design of such a low noise, high gain and fast voltage amplifier is described. From a 3D finite element ANSYS model of the thermal laser stimulation effect combined with three practical case studies we show that thermal laser stimulation is a rapid and precise method for localizing metallic short type faults in ICs. In order to interpret the thermal laser stimulation signal, a simple CMOS inverter model is also presented.

This content is only available as a PDF.
You do not currently have access to this content.