Abstract
Ball shear forces of plastic ball grid array (PBGA) packages are found to decrease after reliability test. Packages with different ball pad metallurgy form different intermetallic compounds (IMC) thus ball shear forces and failure modes are different. The characteristic and dynamic process of IMC formed are decided by ball pad metallurgy which includes Ni barrier layer and Au layer thickness. Solder ball composition also affects IMC formation dynamic process. There is basically no difference in ball shear force and failure mode for packages with different under ball pad metallurgy before reliability test. However shear force decreased and failure mode changed after reliability test, especially when packages exposed to high temperature. Major difference in ball shear force and failure mode was found for ball pad metallurgy of Ni barrier layer including Ni-P, pure Ni and Ni-Co. Solder ball composition was found to affect the IMC formation rate.