Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-7 of 7
Grain growth
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 23-28, September 30–October 3, 2024,
Abstract
View Paper
PDF
It is well known that the maximum prior austenite grain size after carburizing heat treatment is approximately positively correlated with the maximum shear strain in the case of simple deformation of pre process as cold working treatment. On the other hand, it is generally known that the maximum shear strain and the maximum grain size do not correspond when complex cold working is performed, but the reason of these phenomena is not well known. Then, it is necessary to investigate the relationship between the applied strain during cold working with multiple steps and prior austenite grain size after heat treatment(GG). In this study, we used a processing method called HPT processing, which introduces shear strain by torsion deformation under applying high hydrostatic pressure to the top and bottom of a disk-shaped sample using a die, and investigated how GG changes due to the accumulation of dislocations by focusing on the strain amount | ± Δ ε| given in one pass controlled by a processing path called Cyclic-HPT (c-HPT) (4) and the total strain amount 𝛴| ± Δ ε| given to the sample by the accumulation of one pass. As a result, when finer strain is applied, the grain size does not necessarily become smaller, but rather there are boundary conditions that indicate the positive and negative grain size with respect to the number of strains. Similarly, for the grain size distribution, an increase and decrease in grain size was observed with respect to radial distance, so there are boundary conditions that indicate the positive and negative grain size with respect to distance. From these results, it is believed that this may be the mechanism for grain growth behavior in the case of cold working, which involves complex deformation.
Proceedings Papers
The Effects of Thermomechanical Pretreatment on Abnormal Grain Growth During Simulated Carburization
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 11-16, October 17–19, 2023,
Abstract
View Paper
PDF
Carburizing is frequently utilized in the automotive industry in order to increase the surface hardness of a steel alloy while retaining toughness and ductility in the core. At elevated temperatures where some carburizing processes are performed, abnormal grain growth (AGG) can occur. During AGG, the microstructure undergoes bimodal grain growth with some grains growing exponentially faster than others. The growth of large austenite grains through AGG compromises the fatigue performance of carburized steels. AGG is further exacerbated by cold work introduced into the alloy prior to carburizing. Warm work is also sometimes utilized in part forming prior to carburizing. In this study, the effects of warm work on AGG were investigated. AISI 4121 and a modified AISI 4121 that contains Nb and Mo microalloying additions rather than Al for grain size control were warm worked in a range of 0-50% at a temperature of 900°C and then heated in a furnace for various lengths of time at a temperature of 930 °C to simulate a carburizing thermal history. The average prior austenite grain size (PAGS) tended to decrease as the degree of warm work increased, with the NbMo-modified alloy presenting a finer PAGS at all percentages of warm reduction and different lengths of time at the simulated carburization temperature. Specimens of the 50% warm reduced condition were also cold rolled at 5, 10, and 25% reductions, typical of cold sizing, prior to simulated carburization. The average PAGS of these CR samples was finer than their 0% CR counterparts, but the PAGS increased with CR in the modified alloy after 328 minutes of simulated carburization.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 229-237, September 14–16, 2021,
Abstract
View Paper
PDF
Precision cold-forging processes are used to produce near-netshape parts that may then be carburized. During carburization thermal cycles, abnormal grain growth (AGG) after cold forging is known to develop microstructures which limit fatigue strength. In the present study, a small 0.04 wt.% Nb addition was made to a low-alloyed AISI 4121 steel containing 0.3 wt.% Mo. Subcritically annealed specimens were cold rolled (to simulate cold forging) at selected reduction ratios up to 50%, heated according to a simulated gas carburizing cycle at 930 °C, and water quenched to produce a final martensitic microstructure. The number density of abnormally grown grains increased rapidly as the cold rolling reduction ratio increased from 0 to 10%. With a further increase in reduction ratio, the extent of AGG decreased and was absent in samples subjected to the maximum reduction ratio of 50%. The evolution of fine (Nb, Mo)(C,N) precipitates at various stages of processing was characterized by thermodynamic calculations and electron microscopy and compared to the occurrence of abnormal austenite grain growth. The significance of these results for controlling AGG and thus optimizing fatigue performance in commercially-produced cold-forged and carburized components is discussed.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 71-75, September 14–16, 2021,
Abstract
View Paper
PDF
The objective of this work is to develop the material and numerical models needed to simulate the carburizing process of an automotive gear. The paper discusses the factors that influence calculation time and accuracy and presents important equations and material property data. It describes how the simulation predicts local carbon content based on diffusion and how quenching computation provides information on stress states and residual stresses. It also explains how to account for the effects of grain growth, volume variation due to phase changes, and transformation plasticity.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 115-122, October 15–17, 2019,
Abstract
View Paper
PDF
Vacuum carburizing with high pressure gas quenching is increasingly employed to reduce near-surface intergranular oxidation and quenching distortion. It has also been shown to reduce processing times because it can be conducted at higher temperatures, up to 1100 °C. These temperatures, however, may cause austenite grain coarsening, making steel more susceptible to fatigue failure. This paper presents a study showing how microalloying carburizing steels with Mo and Nb improves resistance to austenite grain growth. The control of grain size is attributed to solute and precipitation effects.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 368-372, October 20–22, 2015,
Abstract
View Paper
PDF
Grain growth during heat treatment can affect mechanical properties. A large grain size can result in a lower strength and susceptibility to brittle failure. In order to control the prior austenite grain size, the effect of Austenitizing temperatures and holding times on the grain size and hardness in 4140 steel was experimentally investigated. Samples were heat treated at 900, 1000, and 1100 °C, and held for 1, 4, and 9 hours. After austenitizing, samples were cooled in the furnace to 850 °C before they were quenched in water at room temperature. Each sample was cut, mounted, and polished. Rockwell hardness and microhardness tests were performed on each sample. A Picric etch was used for grain size analysis. The grain size was measured following the E112 standard test method. It was found that the prior austenite grain size increased with temperature and time according to the standard grain growth model. It was also found that the as-quenched hardness decreased with an increase in grain size.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 649-652, October 20–22, 2015,
Abstract
View Paper
PDF
Historically, this carburizing has been performed in an endothermic gas consisting of CO 2 , CH 4 , CO, etc, but carburizing in low pressure with the proper gas mixture changes the landscape. Using C 2 H 2 , the process is no longer endothermic as C 2 H 2 is a catalytically decomposable hydrocarbon and dissociates in the presence of an iron catalyst. LPC is a recipe driven in contrast to the constant monitoring of the carbon potential in atmospheric gas carburizing, and with the wide acceptance of simulation programs, recipes are no longer created by trial and error. Introduction of nitrogen to the steel, followed by carbon with higher temperatures, can dramatically reduce cycle times and still control grain growth.