Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Inspection
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 67-70, October 17–19, 2023,
Abstract
View Papertitled, Checks and Balances – Practical Guidelines for Alloy Trays and Fixtures Fit and Function in Heat Treatment
View
PDF
for content titled, Checks and Balances – Practical Guidelines for Alloy Trays and Fixtures Fit and Function in Heat Treatment
Alloy trays and fixtures are integral components in a heat treat operation. Maintaining furnace equipment and alloy trays and fixtures functionality are essential to maximizing the heat treat operation throughput. This paper will discuss and present practical guidelines for periodic inspection and monitoring of alloy trays and fixtures in support of minimizing potential tray and fixture material handling issues and maximizing heat treat operation productivity and throughput.
Proceedings Papers
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 142-149, October 17–19, 2023,
Abstract
View Papertitled, Integrated Heat-Treatment Simulation with Virtual Inspection of Distorted Gears
View
PDF
for content titled, Integrated Heat-Treatment Simulation with Virtual Inspection of Distorted Gears
Heat-treatment simulation is a powerful tool for gear design and process troubleshooting, but many times the predicted gear distortion is difficult to compare to physical gear measurements and to required specification charts or measurements. To help ease this burden, two software programs are utilized to provide powerful gear analyses to heat-treatment simulation results. This paper briefly describes the software used, DANTE and Integrated Gear Design (IGD), and presents a simple case study. The stress and deformation from the heat treatment of a small gear made of SAE 10B22 are predicted using DANTE. The distorted gear geometry is then imported into IGD and the predicted distortion is compared to the actual measurements of the gear.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 390-393, October 20–22, 2015,
Abstract
View Papertitled, Advanced Robotics in Heat Treat Verification Using Eddy Current
View
PDF
for content titled, Advanced Robotics in Heat Treat Verification Using Eddy Current
Eddy current is a non-destructive testing technique proven for use in heat treat and material structure verification. Modern multi-frequency eddy current instruments can test for conditions such as misplaced case, shallow case, short heat, short quench, and delayed quench. Eddy current testing offers many benefits over traditional heat treat validation methods. Unlike sample testing processes using cut, polish, etch, and visual inspection techniques, eddy current testing provides a clean, fast, and repeatable process that can perform in-line inspections of all parts produced. Eddy current inspections have traditionally focused on symmetrical parts such as wheel bearings and gears. However, advances in robotics have paved the way for cost-effective inspection of non-symmetrical, complex components that would have previously required multiple test stations. Robotics also provides a low-cost way to retest, null, and periodically proof the testing process using multiple conditions of masters. This has been difficult and expensive with other types of automation and operator involvement.