Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Physical design analysis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 66-70, September 14–16, 2021,
Abstract
View Paper
PDF
This study demonstrates the use of simulation in the design of induction hardening coils. It compares three coil geometries, two of which leverage the flexibility of 3D printing. The paper explains how to set up and run the simulations in order to predict temperature fields, hardness profiles, and microstructure distributions in the workpiece. Based on the simulations, the conventionally manufactured coil and one of the two 3D-printed coils do not achieve the desired martensitic microstructure everywhere along the surface of the workpiece. In the case of the 3D-printed coil, the simulations show that the workpiece overheats in an area where its diameter abruptly changes. To fix the problem, the coil was adapted with an additional winding that carries current in the opposite direction. Simulations show that the redesign reduces hot spot temperature by more than 200 °C, producing the desired microstructure in that area of the workpiece and a more uniform hardness profile.