Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-8 of 8
Tensile strength
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 122-131, September 30–October 3, 2024,
Abstract
View Paper
PDF
An intensive quenching (IQ) process is an environmentally friendly method of hardening steel parts. Digitally controlled, IQ employs highly agitated and directed water flow as the quenchant. An extremely high cooling rate applied uniformly over the entire part surface area induces high surface compressive stresses which prevents part distortion and cracking while forming a very fine microstructure. The fine microstructure results in better mechanical properties compared to properties imparted by conventional oil or polymer quenching. The improved mechanical properties enable engineers to design stronger steel parts for higher power density mechanical systems often using steels containing a less amount of alloying elements or using less expensive plain carbon steels. A broad and deep body of knowledge documents IQ’s ability to tailor a steel component’s microstructure to improve steel parts mechanical properties and performance. A sampling of data will be presented including surface and core hardness, tensile, yield and impact strength, elongation and reduction in area, residual surface compressive stresses for through hardened steels and the carburized grades. IQ systems can be readily “dropped in” to existing steel processing facilities or integrated into next generation heating and cooling systems through teamed relationships with equipment makers and part manufacturers seeking a sustainable future.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 139-144, September 30–October 3, 2024,
Abstract
View Paper
PDF
The purpose of this study is to clarify the mechanical properties of the expanded austenite (S phase) formed in austenitic stainless steel (ASS). A small thin rolled plate of SUS304 with 0.5 mm thickness was used as test sample. The test sample was nitrided by active screen plasma nitriding (ASPN) at low processing temperature of 400 °C and 450 °C during 4 h processing time. S phase was formed on the surface of the test sample. The surface hardness of ASPN sample was higher than that of untreated sample. Furthermore, tensile tests and fracture surface observations revealed that the tensile strength was also improved compared to untreated samples.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 321-326, September 30–October 3, 2024,
Abstract
View Paper
PDF
One of the methods of evaluating the mechanical properties of a material in the case of its limited amount is the use of techniques that employ the miniaturized test specimens. The basic properties used mostly for residual life evaluation are tensile strength, impact notch toughness or impact notch toughness transition curve, fracture toughness, creep and high cycle fatigue. For example, by semi-destructive sampling of operating power equipment, actual material properties can be obtained which are crucial for predicting the residual life of the equipment. Furthermore, the local material properties of the weld joint in individual zones can be determined. In this paper applicability of these test methods is described, specific examples of use are given and reference is made to the existing ISO/ASTM 52909:2022 standard for the use of sub-size samples.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 180-186, September 14–16, 2021,
Abstract
View Paper
PDF
Press hardening steel (PHS) applications predominately use 22MnB5 AlSi coated in the automotive industry. This material has a limited supply chain. Increasing the tensile strength and bendability of the PHS material will enable light-weighting while maintaining crash protection. In this paper, a novel PHS is introduced, and properties are compared to 22MnB5. The new Coating Free PHS (CFPHS) steel, 25MnCr, has increased carbon, with chromium and silicon additions for oxidation resistance. Its ultimate tensile strength (UTS) of 1.7 GPa with bending angle above 55° at 1.4 mm thickness improves upon the 22MnB5 grade. This steel is not pre-coated, is oxidation resistant at high temperature, thus eliminating the need for AlSi or shot blasting post processing to maintain surface quality. Microstructural mechanisms used to enhance bendability and energy absorption are discussed for the novel steel. Performance evaluations such as: weldability, component level crush and intrusion testing and e-coat adhesion, are conducted on samples from industrial coils.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 30-32, September 14–16, 2021,
Abstract
View Paper
PDF
This paper provides an overview of salt quench hardening and how it compares with oil quenching. It explains how salt quenching promotes hardenability, ductility, and strength as well as distortion control, heat extraction, and process reduction. It discusses equipment layout configurations, NFPA guidelines and safety practices, and salt quench processes for austempering, marquenching, and neutral hardening applications.
Proceedings Papers
Monserrat Sofía López-Cornejo, Héctor Javier Vergara-Hernández, Pedro Garnica-González, Octavio Vázquez-Gómez, Sixtos Antonio Arreola-Villa
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 123-128, October 15–17, 2019,
Abstract
View Paper
PDF
A hypoeutectoid steel was austenitized at 840 °C for one hour and cooled at two rates. Examination by optical and scanning electron microscopy showed a change in the pearlite microstructure. Cooling in air as compared to furnace cooling reduced the pearlite interlamellar spacing and increased the hardness. The slower cooling resulted in a lower tensile strength, higher tensile elongation, and different fracture appearance.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 342-349, October 20–22, 2015,
Abstract
View Paper
PDF
Recent destructive analysis of six ASTM A350 LF2 flanges has revealed vastly different low temperature (-50°F) Charpy impact toughness from 4 J (3 ft-lbs) to greater than 298 J (220 ft-lbs). These relatively low strength flanges, minimum 248 MPa (36 ksi) yield and 483-655 MPa (70-95 ksi) tensile strength, had nominally the same yield and UTS despite the difference in toughness. Detailed chemical and microstructural analysis was undertaken to elucidate the cause of the toughness range. The majority of the flanges had aluminum additions and a fine grain size with the toughness differences mostly explained by the cooling rate after normalizing with the still air cool showing the lowest toughness and the fastest air cooled sample the highest. For flanges of this strength level a quench and temper operation is not required to obtain good low temperature toughness but forced air cooling after normalizing is a minimum cooling rate to ensure good toughness and overall strength.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 569-579, October 20–22, 2015,
Abstract
View Paper
PDF
The effect of forging temperature and temperature before quenching on microstructure is studied. This is related to the mechanical properties like tensile strength, yield strength and impact toughness. It was observed that martensitic needles in direct quenched parts were slightly longer than the normal hardened and tempered parts. This was attributed to the coarser prior austenite grain size, resulting in fewer nucleation sites in case of direct quenched parts.