Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-8 of 8
Flow
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 1-9, September 30–October 3, 2024,
Abstract
View Paper
PDF
Quenching in a fluid is a complex process. There are several different heat transfer mechanisms that may be occurring at the same time, with the heat transfer coefficients changes as a function of position (x, y, z) and surface temperature on the same part. This is further complicated by having multiple different parts in the same load. Agitation, racking of the parts and the quench tank design all play a role in the resultant properties and distortion of a given part. Further complicating this problem, is that there are multiple methods to measure quenching performance. In this paper, we will be describing an agitation apparatus used at Quaker Houghton for determining heat transfer coefficients as a function of agitation and surface temperature. The probe used is the ISO 9950 (ASTM D6200) Inconel probe, and the heat transfer coefficients are determined by an inverse method provided by the SmartQuench Integra software by RISE/ivf. The apparatus is examined using Computational Fluid Dynamics (CFD), and the calculated flow is compared to the measured fluid flow.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 201-207, September 30–October 3, 2024,
Abstract
View Paper
PDF
The analysis of cooling curves obtained by immersing a probe in the quench medium has been widely used since its availability. For instance, methods described in standards such as ISO 9950 and ASTM D 6482 refer to the use of an Inconel 600 specimen which is quenched to obtain the cooling curve of a given fluid; however, spray quenching is being mostly used in induction hardening processes. In this work, the quenching characteristics of a PAG polymer at 6 and 12 % concentration were determined and compared with water as a baseline. The fluid was heated at 30 °C, while the solution flow rate was set at 90 L/min; two different quenching rings were designed and used in a laboratory-scale setting. Also, the fluid flow in the quench rings was simulated through Computational Fluid Dynamics (CFD), to obtain flow patterns inside the quenching devices. From the results obtained, the cooling rate curves showed no vapor phase, and the maximum cooling rate was found to be higher in one of the quench ring designs. The design of the quench ring device has a significant influence on the quenching characteristics of the quenchant, mainly at medium and low temperatures of the cooling rate curve.
Proceedings Papers
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 127-141, October 17–19, 2023,
Abstract
View Paper
PDF
As Computational Fluid Dynamics (CFD) methods evolve and mature, more engineering problems are being solved through computer simulation to reduce reliance on the costly and time-consuming experimental methods. This trend is also occurring in the gear manufacturing industry, where an increasing number of quality issues related to the oil quenching process are being investigated by CFD methods to find solutions. However, while the CFD theory and numerical methods have made significant advancements, gaps still exist between the academic research and industrial applications. In the case of the oil quenching processes, the prospect of using CFD methods to visualize and study the oil flow pattern in the gear quenching tank is promising yet challenging. The obstacle to simulating the oil quenching process using CFD methods lies not in the numerical method itself for solving the Navier-Stokes equation, but in building a computer simulation model that encompasses all the geometrical details of the quenching tank, fixtures, centrifugal pumps, and gears, including all the gear teeth. This task is particularly challenging for Finite Volume Method (FVM) CFD solvers, as the computation mesh could take days or weeks to build. In this research, a new solution method based on Smoothed Particle Hydrodynamics (SPH) is introduced to simulate the oil flow in the gear quenching tank. Since SPH is a mesh-free Lagrangian method, it not only greatly simplifies the mesh generation task for building the computational models but also handles the complex physics of the free surface flow and fluid-structure interaction with great ease. In addition, the oil flow in the gear quenching tank usually is driven by centrifugal pumps whose dynamics can be simulated directly in SPH methods, as opposed to FVM methods which require complicated moving mesh computation.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 293-301, September 14–16, 2021,
Abstract
View Paper
PDF
The transient behavior of boiling phenomena during quenching of an AISI 304 stainless steel, conical-end, cylindrical probe in flowing water at 60 °C was studied. Two free-stream velocities (0.2 and 0.6 m/s) and two initial probe temperatures (850 and 950 °C) were investigated. From high-speed video recordings, undulations of the liquid vapor interface that appear periodically and propagate in the direction of the flow stream were observed during the vapor film stage. After the collapse of the vapor film, a wetting front is formed which consists of many small bubbles that coalesce rapidly in a small area while fewer and larger bubbles nucleate and grow below it. The initial temperature has a marginal effect on the size and half-life of the large bubbles. However, the water flow rate produces larger values of maximum diameter and half-life time for water flowing at 0.2 m/s than their equivalents for 0.6 m/s.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 111-113, September 14–16, 2021,
Abstract
View Paper
PDF
This paper presents the results of a study examining the cooling rates of two vacuum high-pressure gas quenching furnaces: a large 10-bar furnace equipped with a 600-hp blower motor and a smaller 10-bar furnace with a 300-hp motor. In comparing critical cooling temperatures for H13 in the 1850°F to 1300°F range, the furnace that is almost three times larger in volume (110 vs. 40 ft 3 of hot zone) cooled the same workload almost identically to smaller unit. The test results clearly show that gas flow, or velocity, is more meaningful than pressure when it comes to cooling rate.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 221-227, October 15–17, 2019,
Abstract
View Paper
PDF
A number of modifications were made to a batch quenching process for pinion gears to reduce the amount of size change in the ID. This paper assesses the impact of adding vertical plates to the load elevator to better condition oil flow to the stacked part baskets. Data collected from pinion gears before and after the modification show a reduction in the average and range of ID bore change, indicating an improvement in quench uniformity. CFD analyses suggest that improvement is due to a significant reduction in turbulence, resulting from the addition of the vertical plates. As the authors explain, high levels of turbulence promote collapse of the vapor film that occurs at the start of the quench process, and disparity in the timing causes unwanted variation in part size change throughout the load.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 372-377, October 15–17, 2019,
Abstract
View Paper
PDF
This paper reviews several recent advancements in high pressure gas quenching technology along with the impact of new higher hardenability steels. With design upgrades and improved gas flow and heat removal, a wider variety of materials, part geometries, and load sizes can now be gas quenched.
Proceedings Papers
HT2013, Heat Treat 2013: Proceedings from the 27th ASM Heat Treating Society Conference, 295-303, September 16–18, 2013,
Abstract
View Paper
PDF
This study evaluated the suitability of a new furnace and quench tank facility for heat treating blowout preventer (BOP) bodies in the oil well industry. A challenging 19.5T single-bore BOP body that previously failed to meet hardness consistency requirements was selected for comprehensive analysis. The research aimed to address historical heat treatment challenges by utilizing fluid flow analysis for optimal quench tank positioning and surface thermocouples to verify temperature uniformity during austenitization. Brinell hardness testing revealed significant improvements in hardness consistency after treatment, concluding that the new heat treatment facility will substantially enhance the manufacturer’s ability to meet stringent customer specifications for BOP bodies.