Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Core hardness
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 122-131, September 30–October 3, 2024,
Abstract
View Papertitled, Intensively Quenched Steels for Stronger Parts
View
PDF
for content titled, Intensively Quenched Steels for Stronger Parts
An intensive quenching (IQ) process is an environmentally friendly method of hardening steel parts. Digitally controlled, IQ employs highly agitated and directed water flow as the quenchant. An extremely high cooling rate applied uniformly over the entire part surface area induces high surface compressive stresses which prevents part distortion and cracking while forming a very fine microstructure. The fine microstructure results in better mechanical properties compared to properties imparted by conventional oil or polymer quenching. The improved mechanical properties enable engineers to design stronger steel parts for higher power density mechanical systems often using steels containing a less amount of alloying elements or using less expensive plain carbon steels. A broad and deep body of knowledge documents IQ’s ability to tailor a steel component’s microstructure to improve steel parts mechanical properties and performance. A sampling of data will be presented including surface and core hardness, tensile, yield and impact strength, elongation and reduction in area, residual surface compressive stresses for through hardened steels and the carburized grades. IQ systems can be readily “dropped in” to existing steel processing facilities or integrated into next generation heating and cooling systems through teamed relationships with equipment makers and part manufacturers seeking a sustainable future.
Proceedings Papers
HT2011, Heat Treating 2011: Proceedings from the 26th Heat Treating Society Conference, 122-130, October 31–November 2, 2011,
Abstract
View Papertitled, Detailed Specifications for Global Heat Treatment Sourcing and Materials
View
PDF
for content titled, Detailed Specifications for Global Heat Treatment Sourcing and Materials
The very nature of global sourcing means that components must carry clear and detailed specifications for material, heat treatment, and test methods. Qualified global heat treat facilities can achieve good control of not only the common features such as surface and gradient hardness, but also of microstructure, core hardness, residual stress, and other critical metallurgical parameters. This paper will discuss a new concept for material specifications and more detailed heat treatment specifications for the global marketplace.