Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 64
Hardness
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 41-49, September 30–October 3, 2024,
Abstract
View Paper
PDF
Induction surface hardening is a process often used in industrial applications to efficiently increase the lifetime of components. Recently, this process has been enhanced with the inductive short time austempering process, creating a martensitic-bainitic microstructure. It is well-known that in homogeneous mixed microstructures, an optimally adjusted volume fraction of bainite can significantly increase the lifetime of the components even further. Regarding inductive short time austempering, there is a lack of knowledge in characterizing and differentiating graded microstructures, which occur due to the temperature gradients within the process. Therefore, three methods were investigated: the analysis of the grayscale profile of metallographic sections, the hardness profile and the full width at half maximum (FWHM) profile from the intensity curve (rocking curve) of the X-ray diffraction pattern. These methods were initially applied to homogeneous structures and evaluated. The findings were then transferred to graded microstructures. Finally, the graded microstructures could be differentiated both via the hardness profile and the FWHM value, while the grayscale analysis only allowed qualitative statements to be made. It became evident that both the volume fractions and their structure are crucial for subsequent mechanical characterization. Since the martensitic microstructure is easier to identify, it serves as a reliable reference for evaluating the mixed microstructure. In summary, these findings offer the foundation for further characterization of graded martensitic-bainitic mixed microstructures.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 57-66, September 30–October 3, 2024,
Abstract
View Paper
PDF
Martensitic stainless steels are an important group of steels for applications as knives, tools & molds and highly loaded parts in the food and plastics processing industry as well as for machinery components. Their typical hardening consists of quenching and (multiple) tempering (Q&T). As many of these steels contain at least smaller amounts of retained austenite (RA) after quenching, partitioning of carbon and nitrogen from the martensite into the RA can take place during tempering, changing it from Q&T to quenching & partitioning (Q&P). This contribution provides as systematic overview of such partitioning effects on the microstructure like the amount and stability of retained austenite as well as on subsequent effects on material properties such as hardness, toughness, strength and ductility. The various effects were investigated on several steel grades and cover also the effect of variation in heat treatment parameters like austenitizing temperature, quench rate, quenching temperature, number, duration and temperature of the tempering, respectively partitioning. The results clearly show that partitioning dominates over tempering effects at temperatures up to 500°C. Higher quenching temperatures can increase the RA-content similar to higher austenitizing temperatures. Lower quench rates can reduce it due to carbide (nitride) precipitation. Rising tempering (partitioning) temperatures up to 400°C enhances the austenite stabilization. Higher amounts of RA with reduced stability promotes transformation induced plasticity (TRIP), providing the possibility to optimized ductility and tensile strength but reduces yield strength. Increased amounts of RA with sufficient stability increases impact toughness at slightly reduced hardness. Increasing the tempering temperature above 500°C in contrast promotes, after a certain nucleation time, carbide and nitride precipitation, resulting in the elimination of the retained austenite and therefore a typical tempering condition.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 89-96, September 30–October 3, 2024,
Abstract
View Paper
PDF
Diamond-like carbon (DLC) coatings, which improve wear resistance and extend component service life, have gained considerable research attention as an approach for conserving limited resources. The DLC coating is a highly functional film with high hardness and excellent low-friction, wear-resistance, and corrosion-resistance properties; however, it has high residual stress and low adhesion between the substrate and the film. Existing studies have focused on using DLC containing metallic elements (Me-DLC) as an intermediate layer to minimize residual stress, thereby improving adhesion. Si-DLC is deposited using a mixture of hydrocarbon gases, such as methane (CH 4 ) and acetylene (C 2 H 2 ), and silicon gases, such as tetramethylsilane (TMS: Si(CH 3 ) 4 ), H, and Si, to form the DLC coating. The composition, hardness, Young’s modulus, and friction coefficient of the film can be controlled by changing the composition of the gas mixture. This study investigated the effect of the flow rate ratio of source gases (CH 4 and TMS; C 2 H 2 and TMS) on the properties of the DLC film when Si-DLC is deposited as an intermediate layer on austenitic stainless steel SUS304 using plasma-enhanced chemical vapor deposition. The coating time was adjusted to ensure that the thicknesses of the Si-DLC layer and DLC film were 1.0 and 0.2 μm, respectively, under both conditions. The results demonstrated that the durability of the DLC film improved and adhesion decreased with a decrease in the TMS ratio in the Si-DLC intermediate layer. Durability improved and adhesion decreased when C 2 H 2 was used as the source gas, as compared to when CH 4 was used.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 107-113, September 30–October 3, 2024,
Abstract
View Paper
PDF
In recent years, physical vapor deposition and chemical vapor deposition (CVD) methods have made significant advancements due to the growing demand for surface modification technologies. This study focuses on depositing diamond-like carbon (DLC) as a thin, hard film using plasma-enhanced CVD. DLC possesses properties such as high hardness, low friction, wear resistance, and chemical stability. However, a drawback is low adhesion caused by residual stress and differences in hardness between the film and the substrate material. Therefore, efforts are underway to improve adhesion by introducing a DLC intermediate layer containing metallic elements to reduce residual stress or by applying treatments to harden the substrate material, such as nitriding or carburizing. Active screen plasma nitriding (ASPN) is a nitriding method that eliminates edge effects and electrically insulates the sample during the process. However, during nitriding, deposits can cover the sample and slow down the nitriding rate. To address this, a nitriding method called "direct-current plasma nitriding with screen (S-DCPN)" has been developed. It involves applying a voltage to the sample and screen during ASPN to remove deposits via sputtering action, thereby increasing the nitriding rate. Although the duplex process of ASPN and DLC-coating deposition has been studied, there are limited reports on the duplex process with S-DCPN. This study investigates the effect of intermediate layer composition on mechanical properties by forming a nitrided layer on the surface of SUS304 through S-DCPN treatment, depositing a Si-DLC intermediate layer with varying compositions, and applying a DLC film on the top surface. The results demonstrate that the lower the Si ratio in the Si-DLC intermediate layer, the better the wear resistance. Furthermore, the study reveals that wear resistance and adhesion were improved compared to samples without S-DCPN treatment.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 114-121, September 30–October 3, 2024,
Abstract
View Paper
PDF
Surface modification involves the chemical or physical impartation of enhanced functionality to the surface of materials, and has become increasingly important in recent years. Nitriding is a surface modification method that hardens the surface of metallic materials by causing nitrogen to permeate and diffuse into the surface to form various nitrides or by supersaturating a solid solution of nitrogen in the metal. This is effective in improving the hardness, corrosion resistance, and wear resistance. Plasma nitriding, a type of nitriding process, has several advantages, such as low energy consumption, short processing time, and low environmental impact. In contrast, the conventional plasma nitriding method forms plasma on the surface of the treated material, which may cause phenomena that lead to defects in the treated material. Therefore, the directcurrent plasma nitriding with screen (S-DCPN) method reduces these problems because plasma is formed not only on the treated material but also on the surface of the screen. Stainless steel has excellent corrosion resistance; however, nitriding treatment above a certain temperature reduces the corrosion resistance owing to chromium nitride precipitation. In this study, the S-DCPN treatment, a type of plasma nitriding method, was applied to form a thick nitrided layer without reducing corrosion resistance. The S-DCPN treatment was performed using ferritic stainless steel SUS430 as the sample and austenitic stainless steel SUS304 as the screen material at treatment temperatures of 633 and 653 K, treatment times of 5 and 15 h, a gas pressure of 200 Pa, and a gas composition of 75% N 2 - 25% H 2 . Consequently, the α N phase with supersaturated nitrogen solid solution was identified under all conditions. Nitrogen diffusion and hardness increased with increasing treatment temperature and time. In the corrosion tests, corrosion resistance improved under all conditions.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 122-131, September 30–October 3, 2024,
Abstract
View Paper
PDF
An intensive quenching (IQ) process is an environmentally friendly method of hardening steel parts. Digitally controlled, IQ employs highly agitated and directed water flow as the quenchant. An extremely high cooling rate applied uniformly over the entire part surface area induces high surface compressive stresses which prevents part distortion and cracking while forming a very fine microstructure. The fine microstructure results in better mechanical properties compared to properties imparted by conventional oil or polymer quenching. The improved mechanical properties enable engineers to design stronger steel parts for higher power density mechanical systems often using steels containing a less amount of alloying elements or using less expensive plain carbon steels. A broad and deep body of knowledge documents IQ’s ability to tailor a steel component’s microstructure to improve steel parts mechanical properties and performance. A sampling of data will be presented including surface and core hardness, tensile, yield and impact strength, elongation and reduction in area, residual surface compressive stresses for through hardened steels and the carburized grades. IQ systems can be readily “dropped in” to existing steel processing facilities or integrated into next generation heating and cooling systems through teamed relationships with equipment makers and part manufacturers seeking a sustainable future.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 139-144, September 30–October 3, 2024,
Abstract
View Paper
PDF
The purpose of this study is to clarify the mechanical properties of the expanded austenite (S phase) formed in austenitic stainless steel (ASS). A small thin rolled plate of SUS304 with 0.5 mm thickness was used as test sample. The test sample was nitrided by active screen plasma nitriding (ASPN) at low processing temperature of 400 °C and 450 °C during 4 h processing time. S phase was formed on the surface of the test sample. The surface hardness of ASPN sample was higher than that of untreated sample. Furthermore, tensile tests and fracture surface observations revealed that the tensile strength was also improved compared to untreated samples.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 173-178, September 30–October 3, 2024,
Abstract
View Paper
PDF
Mold repair is a viable strategy for saving energy and reducing CO 2 emissions. Papers in the literature show that repairing a limited damaged area of the mold instead of producing a new one is becoming increasingly attractive, especially considering the latest European and international regulations introduced with the green deal. In this paper, the authors are pleased to present some preliminary results related to the repair of AISI H13 tool steel molds by Laser-Directed Energy Deposition. Steel blocks (20 x 55 x 100 mm3), previously tempered at 435±10 HV, were machined to reproduce the material removal of the damaged part of the mold. Subsequently, the region was repaired by L-DED using commercial H13 powder. The process parameters were optimized to obtain a defect-free welded area. Since the microstructure of the deposited tool steel consists of hard (730±10 HV) and brittle (7 J Charpy impact toughness) martensite, a series of post-process heat treatments were performed at different temperatures to restore a hardness compatible with that of the base steel. However, this goal was only partially achieved due to the different tempering behavior of L-DED-deposited and bulk H13 steel. In particular, the tempering temperature had to be limited to avoid softening of the base steel. In the best case, double tempering at 620 °C resulted in a toughness recovery of up to 42 J. Thermal fatigue tests showed better resistance to crack propagation after tempering, as evidenced by the shallower penetration depth compared to the as-built material.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 193-200, September 30–October 3, 2024,
Abstract
View Paper
PDF
Carbide free bainitic microstructures can be developed via different thermal processing routes, and the details affect the scale and morphology of the microstructural constituents. In this study, bainitic microstructures are formed by either a controlled cooling process or an austempering process to evaluate the relationship between microstructure and mechanical properties in a 0.2C - 2Mn - 1.5Si - 0.8Cr steel containing small amounts of Nb, Ti, B, and N, and the results are compared to a 4140 steel processed via quenching and tempering. The resulting microstructures are characterized with scanning electron microscopy. When compared to microstructures produced via austempering, microstructures produced with a controlled cool exhibit an increased variety of transformation products, specifically regarding size and distribution of martensite-austenite constituents within a lath-like bainitic ferrite matrix. Nanoindentation testing shows that different transformation products exhibit significantly different local hardness. In all (primarily) bainitic conditions tested for these materials, the martensite/austenite constituent exhibits the highest hardness, followed by the lath bainitic ferrite/retained austenite constituent. Granular bainite and coarse bainitic constituents exhibit the lowest relative hardness in the conditions where they are observed.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 272-280, September 30–October 3, 2024,
Abstract
View Paper
PDF
Quenching is one of the primary processes to improve mechanical properties in steels, particularly hardness. Quenching is well established for different geometries of individually treated steel components; while in-steam quenching of large diameter continuously cast steel bar has several specific features which are difficult and costly to experimentally optimize. The end-quench Jominy test has been used extensively to study the hardenability of different steel grades. Different numerical, analytical, and empirical models have been developed to simulate the Jominy process and to understand quenching of steels. However, it is not straight forward to translate experimental data from Jominy test on instream quenched large diameter continuously cast products. Therefore, in this work, coupled thermal, mechanical, and metallurgical models were used to simulate the end-quench Jominy test and in-stream quenched industrial round billets with a goal to obtain similarity of experimental structure and properties for both quenched products. For this purpose, finite element analysis (FEA) was employed using the software FORGE (by Transvalor). Used thermophysical properties were generated by JMATPro software. The evolution of microstructure during quenching and resulting hardness were simulated for AISI 4130, and AISI 4140 steel grades. The cooling rates at different positions in the Jominy bar were determined by simulation and compared to experimental. After verification and validation, the FEA simulation was utilized to predict different phases and hardness at different conditions in industry produced round billets. Additionally, relations between Jominy positions and radial positions in the billet were established allowing us to predict structure and properties in inline quenched continuously cast bar having different diameters.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 301-308, September 30–October 3, 2024,
Abstract
View Paper
PDF
Increasing power density and rotational speed pose significant challenges for transmission design, especially in the aerospace and electro mobility sectors. Due to increased energy input and reduced heat dissipation, higher operating temperatures occur in high performance gears. At higher temperatures, the hardness and microstructure of conventional bearing and gear materials are affected by annealing effects, which can reduce the load capacity of these components. Therefore, increased operating temperatures can only be considered if the components are made of special heat-resistant, high-performance material systems. Heat treatment is essential to achieve the required performance. Today, high performance gears are typically case hardened to achieve the best performance in service. Due to the meta-stable properties of martensite and retained austenite, especially for low alloy case hardening steels, the microstructure can degrade in service if the temperature equals or exceeds the previous tempering. As a result, the hardness and performance of the components will decrease. Alternative steel grades with increased alloy content can mitigate but are in most cases more expensive. Therefore, an increase in temperature resistance through heat treatment of the low-alloy steels would be of increased interest. To achieve a more stable microstructure state, new heat treatments and alternative microstructures must be considered. This presentation will address the tempering behavior of martensitic and bainitic microstructures under long-term thermal stress above typical tempering conditions at 210 °C for up to 200 hours. The microstructure degradation and hardness change are shown.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 312-315, September 30–October 3, 2024,
Abstract
View Paper
PDF
Additive manufacturing is increasingly used in a variety of applications. Directed Energy Deposition (DED) technology using powder feedstock enables the production of materials in combinations that would be very problematic using conventional technologies. DED is a technological process where the fed material is melted directly at the desired location using a laser beam. The research described here deals with the additive manufacturing and subsequent induction heat treatment of a functional deposited layer of M2 high-speed steel. Induction treatment has the advantage that only the functional layer of the component can be heat treated without affecting the base material. It is therefore possible to heat treat a combination of completely different materials with different properties without degrading the base material. Hardness values reached 950 HV (68 HRC) both after additive manufacturing and after additive manufacturing and induction treatment. Induction heat treatment of the deposited M2 layer ensured removal of traces of the original melt pools produced by the additive manufacturing. Investigation of the microstructure and mechanical properties of M2 tool steel after induction heat treatment produced by DED highlights its potential for high performance tooling and machining applications. The main objective of this research is to improve the final properties and tool life of forming tools when the tool is made of less expensive low-alloy steel and its functional layer is made of M2 high speed steel using additive manufacturing technology.
Proceedings Papers
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 60-66, October 17–19, 2023,
Abstract
View Paper
PDF
Quenched and tempered (Q&T) medium-C steels with various V and Mo additions were studied to understand the relationship between alloy carbide precipitation and hydrogen absorption and trapping behaviours. Heat treatments were selected in the temperature range favourable for V carbide formation, 500-600 °C, leading to higher hardness compared to similar V- and Mo-free alloys due to precipitation hardening. Heat-treated coupons were electrochemically charged to introduce hydrogen, and the bulk hydrogen concentration was measured using melt extraction analysis. Hardness and dislocation density were measured for each tempered condition to relate these properties to the hydrogen absorption and trapping behaviours of each material. Results indicate that dislocation density as well as V and Mo carbide precipitation increase the extent of hydrogen absorbed during charging and the amount of hydrogen remaining trapped after holding at ambient temperature for up to 168 h (1 week).
Proceedings Papers
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 71-76, October 17–19, 2023,
Abstract
View Paper
PDF
The objective of this work was conducted to investigate the influence of nickel (Ni) content and retained austenite on rolling-sliding contact fatigue (RSCF) life in carburized gear steel. In order to evaluate Ni and retained austenite effects, this study utilized carburized steel specimens of 4120 (0.13 wt pct Ni) and 4820 (3.38 wt pct Ni), which were subjected to RSCF testing. The specimens were gas carburized with a resulting case depth of approximately 1.3 mm, based on a hardness of 500 HV. The retained austenite was measured using x-ray diffraction at depths beneath the surface of 50, 250, 450, 650 μm. The 4120 specimens have a higher surface retained austenite content than the 4820. Specimens were surface ground to an average surface roughness of 0.2 μm to decrease the effect of as-carburized surface roughness on the fatigue life. The specimens underwent RSCF testing, with a surface contact stress of 2.5 GA and a slide to roll ratio of -20 pct, until a pit formed, as detected by an accelerometer. The pits that formed on the surface of the specimens were analysed with secondary electron microscopy, macrophotographs, and light optical microscopy. The pits that formed from the RSCF testing conditions were surface-initiated. The fatigue life of the 4820 specimens was higher than the fatigue life of the 4120 specimens, suggesting that the higher Ni level is beneficial to the fatigue life.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 7-16, September 14–16, 2021,
Abstract
View Paper
PDF
Selective laser melting (SLM) is an additive manufacturing technique that can be used to make the near-net-shape metal parts. M2 is a high-speed steel widely used in cutting tools, which is due to its high hardness of this steel. Conventionally, the hardening heat treatment process, including quenching and tempering, is conducted to achieve the high hardness for M2 wrought parts. It was debated if the hardening is needed for additively manufactured M2 parts. In the present work, the M2 steel part is fabricated by SLM. It is found that the hardness of as-fabricated M2 SLM parts is much lower than the hardened M2 wrought parts. The characterization was conducted including X-ray diffraction (XRD), optical microscopy, Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to investigate the microstructure evolution of as-fabricated, quenched, and tempered M2 SLM part. The M2 wrought part was heat-treated simultaneously with the SLM part for comparison. It was found the hardness of M2 SLM part after heat treatment is increased and comparable to the wrought part. Both quenched and tempered M2 SLM and wrought parts have the same microstructure, while the size of the carbides in the wrought part is larger than that in the SLM part.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 17-22, September 14–16, 2021,
Abstract
View Paper
PDF
Powder metallurgy (PM) is the fabrication process of compacting metal powders to shape and sintering these compacts to yield the final material’s properties. The PM compaction process allows for complex geometries to be formed that would normally lead to long and expensive machining processes from wrought steels. Special alloy selection can allow for hardening of the microstructure during the sintering procedure. The sinter hardened (SH) alloys exhibit good mechanical properties along with good hardenability and dimensional stability and may be a suitable replacement for wrought steels where low distortion from heat treatment or microstructural control is required. In this study, it was found for a complex geometry coupler application, a SH alloy could successfully replace an austenitizing heat treatment process with a low carbon steel. The low carbon steel was found to have micro heterogeneities from heat treatment that lead to premature failure in the application. Dimensional distortion and production variance were also of concern with the low carbon steel. The SH material demonstrated acceptable physical properties, hardness and microstructural uniformity to solve the concerns associated with processing of the low carbon steel coupler. Post processing optimization also added to the life performance of the coupler by tailoring the final microstructure to mating components.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 117-124, September 14–16, 2021,
Abstract
View Paper
PDF
Nitriding surface hardening is commonly used on steel components for high wear, fatigue and corrosion applications. Case hardening results from white layer formation and coherent alloy nitride precipitates in the diffusion zone. This paper evaluates the microstructure development in the nitrided case and its effects on the hardness in both the white layer and the substrate for two industry nitriding materials, Nitralloy 135M and AISI 4140. Computational thermodynamic calculations were used to identify the type and amount of stable alloy nitrides precipitation and helped explain the differences in the white layer hardness, degree of porosity at the surface, and the hardening effect within the substrate. Some initial insights toward designing nitriding alloys are shown.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 257-262, September 14–16, 2021,
Abstract
View Paper
PDF
The cooling history of carburized heat-treated gears plays a significant role in developing microstructure, hardness, and residual stress in the tooth that influences the fatigue performance of the gear. Evaluating gear carburizing heat treatment should include a microstructure and hardened depth evaluation. This can be done on an actual part or with a test piece. The best practice for a test piece is to use a section size that closely approximates the cooling rate at the gear flank of the actual gear. This study furthers work already presented showing the correct test piece size that should be used for different gear modules (tooth thicknesses). Metallurgical comparisons between test pieces, actual gears, and FEA simulations are shown.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 309-314, September 14–16, 2021,
Abstract
View Paper
PDF
AISI 8620 low carbon steel is widely used due to its relatively low cost and excellent case hardening properties. The nominal chemistry of AISI 8620 can have a large range, affecting the phase transformation timing and final hardness of a carburized case. Different vendors and different heats of steel can have different chemistries under the same AISI 8620 range which will change the result of a well-established heat treatment process. Modeling the effects of alloy element variation can save countless hours and scrap costs while providing assurance that mechanical requirements are met. The DANTE model was validated using data from a previous publication and was used to study the effect of chemistry variations on hardness and phase transformation timing. Finally, a model of high and low chemistries was executed to observe the changes in hardness, retained austenite and residual stress caused by alloy variation within the validated heat treatment process.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 38-43, September 14–16, 2021,
Abstract
View Paper
PDF
This paper presents the results of a study on a new coating method for alloy steel. The coatings were synthesized on the surface of H21 die steel through a combination of thermal-chemical treatment (TCT) and electron beam processing (EBP). A paste containing boron and aluminum was applied to the test samples which were then heated to accelerate the diffusion process. After 2 h at 950 °C, the diffusion layers were found to be 120 μm thick, and after 2 h at 1050 °C, they were 580 μm thick. The subsequent EBP led to a complete transformation of the primary diffusion layer and an increase in thickness to 1.6 mm. XRD analysis showed significant differences in composition before and after EBP and the presence of tungsten and iron borides. It was also found that the distribution of microhardness and composition over the layer thickness had a more favorable profile after EBP.
1