Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Magnetic properties
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 53-57, September 14–16, 2021,
Abstract
View Paper
PDF
This paper investigates the effect of various types of errors on the accuracy of finite-element models used to simulate electromagnetic induction heat treating processes. By comparing simulation outputs, it shows how FEA calculations are affected by incorrect material specifications, incorrectly entered data, imprecise data, misassigned elements, unsuitable mesh sizing, inadequate current or power, and failure to properly account for skin effect depth. The paper includes relevant data and equations in addition to computer generated plots.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 63-69, October 15–17, 2019,
Abstract
View Paper
PDF
Inductive welding systems used to make metal tubes often incorporate a ferrite impeder to limit induced electrical current on the ID of the tube under the induction coil. This paper assesses the improvement that can be achieved through the use of soft magnetic composites, instead of ferrite, and the addition of an external magnetic controller or bridge. The authors explain how they simulated the potential impact of the two design modifications and experimentally verified the results.