Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 32
Tempering
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 57-66, September 30–October 3, 2024,
Abstract
View Paper
PDF
Martensitic stainless steels are an important group of steels for applications as knives, tools & molds and highly loaded parts in the food and plastics processing industry as well as for machinery components. Their typical hardening consists of quenching and (multiple) tempering (Q&T). As many of these steels contain at least smaller amounts of retained austenite (RA) after quenching, partitioning of carbon and nitrogen from the martensite into the RA can take place during tempering, changing it from Q&T to quenching & partitioning (Q&P). This contribution provides as systematic overview of such partitioning effects on the microstructure like the amount and stability of retained austenite as well as on subsequent effects on material properties such as hardness, toughness, strength and ductility. The various effects were investigated on several steel grades and cover also the effect of variation in heat treatment parameters like austenitizing temperature, quench rate, quenching temperature, number, duration and temperature of the tempering, respectively partitioning. The results clearly show that partitioning dominates over tempering effects at temperatures up to 500°C. Higher quenching temperatures can increase the RA-content similar to higher austenitizing temperatures. Lower quench rates can reduce it due to carbide (nitride) precipitation. Rising tempering (partitioning) temperatures up to 400°C enhances the austenite stabilization. Higher amounts of RA with reduced stability promotes transformation induced plasticity (TRIP), providing the possibility to optimized ductility and tensile strength but reduces yield strength. Increased amounts of RA with sufficient stability increases impact toughness at slightly reduced hardness. Increasing the tempering temperature above 500°C in contrast promotes, after a certain nucleation time, carbide and nitride precipitation, resulting in the elimination of the retained austenite and therefore a typical tempering condition.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 132-138, September 30–October 3, 2024,
Abstract
View Paper
PDF
Heat treatment of steels is a process of modifying the mechanical properties by solid-state phase transformations or microstructural changes through heating and cooling. The material volume changes with phase transformations, which is one of the main sources of distortion. The thermal stress also contributes to the distortion, and its effect increases with solidstate phase transformations, as the material stays in the plastic deformation field due to the TRIP effect. With the basic understanding described above, the sources of distortion from a quench hardening process can be categorized as: 1) nonuniform austenitizing transformation during heating, 2) nonuniform austenite decomposing transformations to ferrite, pearlite, bainite or martensite during quenching, 3) adding of carbon or nitrogen to the material, and forming carbides or nitrides during carburizing or nitriding, 4) coarsening of carbide in tempered martensite during tempering, 5) stress relaxation from the initial state, 6) thermal stress caused by temperature gradient, and 7) nonhomogeneous material conditions, etc. With the help of computer modeling, the causes of distortion by these sources are analyzed and quantified independently. In this article, a series of modeling case studies are used to simulate the specific heat treatment process steps. Solutions for controlling and reducing distortion are proposed and validated from the modeling aspect. A thinwalled part with various wall section thickness is used to demonstrate the effectiveness of stepped heating on distortion caused by austenitizing. A patented gas quenching process is used to demonstrate the controlling of distortion with martensitic transformation for high temperature tempering steels. The effect of adding carbon to austenite on size change during carburizing is quantified by modeling, and the distortion can be compensated by adjusting the heat treat part size.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 145-151, September 30–October 3, 2024,
Abstract
View Paper
PDF
Much more steel must be produced from scrap to meet emissions targets, and utilizing this growing resource is a sound economic strategy. However, the presence of contaminating elements restricts the applications in which end-of-life scrap can replace primary steel. The use of low alloyed quenching and tempering steel grade such as 39MnCrB6-2 to reach high mechanical characteristics (around 1000 MPa) obliges often to apply low tempering temperatures for which tempering embrittlement may be observed. In this paper, it is proposed to reduce the hold time and to increase the temperature during conventional tempering to (1) reduce the embrittlement because of segregation of elements like copper, (2) to change the fracture mechanism with finer martensite sub-grains and (3) to promote θ particles with smaller dimensions but higher density.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 173-178, September 30–October 3, 2024,
Abstract
View Paper
PDF
Mold repair is a viable strategy for saving energy and reducing CO 2 emissions. Papers in the literature show that repairing a limited damaged area of the mold instead of producing a new one is becoming increasingly attractive, especially considering the latest European and international regulations introduced with the green deal. In this paper, the authors are pleased to present some preliminary results related to the repair of AISI H13 tool steel molds by Laser-Directed Energy Deposition. Steel blocks (20 x 55 x 100 mm3), previously tempered at 435±10 HV, were machined to reproduce the material removal of the damaged part of the mold. Subsequently, the region was repaired by L-DED using commercial H13 powder. The process parameters were optimized to obtain a defect-free welded area. Since the microstructure of the deposited tool steel consists of hard (730±10 HV) and brittle (7 J Charpy impact toughness) martensite, a series of post-process heat treatments were performed at different temperatures to restore a hardness compatible with that of the base steel. However, this goal was only partially achieved due to the different tempering behavior of L-DED-deposited and bulk H13 steel. In particular, the tempering temperature had to be limited to avoid softening of the base steel. In the best case, double tempering at 620 °C resulted in a toughness recovery of up to 42 J. Thermal fatigue tests showed better resistance to crack propagation after tempering, as evidenced by the shallower penetration depth compared to the as-built material.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 220-226, September 30–October 3, 2024,
Abstract
View Paper
PDF
Quenching and tempering (Q&T) allows a wide range of strength and toughness combinations to be produced in martensitic steels. Tempering is generally done to increase toughness, although embrittling mechanisms result in temperature ranges where strength and toughness may decrease simultaneously. Tempered martensite embrittlement (TME) represents one such mechanism, associated with the decomposition of retained austenite and precipitation of cementite during tempering, usually between 250 and 450 °C. The use of induction heating allows for time-temperature combinations, previously unobtainable by conventional methods, that have been shown to improve properties. The present work shows a beneficial effect of rapid tempering in alloy 1045, with an increase in energy absorption of about 50% when measured at room temperature via a three-point bending fracture test in the TME regime. Phase fraction measurements by Mössbauer spectroscopy showed that increased energy absorption was obtained despite essentially complete decomposition of retained austenite during tempering. Scanning electron microscopy (SEM) investigation of the carbide distribution showed refinement of the average carbide size of approximately 15% in the rapid tempered conditions. SEM characterization of the fracture surfaces of the rapid tempered three-point bend samples showed that, despite an increase in energy absorption in the TME regime, increased microscopic ductile fracture appearance was observed only at the highest test temperature.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 281-287, September 30–October 3, 2024,
Abstract
View Paper
PDF
High-alloy steels, like Ferrium C64, are used in powertrain components due to their corrosion resistance and high temperature resistance properties. These steels undergo a tempering temperature that is well above traditional steel, and during this process alloy carbides or compounds form, increasing the materials hardness, mechanical strength, and high temperature resistance properties. In the early stages of tempering, softening occurs due to the formation and coarsening of iron carbide, followed by a hardening as the alloy elements combine to form nano-scale dispersoids. These alloy carbides block the path of dislocations in the grain, strengthening the material. At longer tempering times or high temperatures, the coarsening of these alloy carbides and compounds can cause softening. A predictive material model for the high-tempering response of steels is needed to ensure peak hardening properties are met. For a robust heat treatment model, the material response for every step of the process needs to be modeled. These material properties include austenitization rates and thermal expansion during heating, carbon diffusivity and saturation limits for carburization, phase transformation rates and thermal contraction rates per phase during cooling and quenching, deep-freeze kinetics for further martensitic transformation, tempering kinetics for formation of the tempered martensite phase, and carbide kinetics for formation, coarsening, and size. Additionally, mechanical properties of each phase as a function of carbon need to be defined to ensure the proper mechanical response during and after heat treatment. After the material model is developed it can be used to design and optimize the high-temperature tempering process for any part using the same material.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 301-308, September 30–October 3, 2024,
Abstract
View Paper
PDF
Increasing power density and rotational speed pose significant challenges for transmission design, especially in the aerospace and electro mobility sectors. Due to increased energy input and reduced heat dissipation, higher operating temperatures occur in high performance gears. At higher temperatures, the hardness and microstructure of conventional bearing and gear materials are affected by annealing effects, which can reduce the load capacity of these components. Therefore, increased operating temperatures can only be considered if the components are made of special heat-resistant, high-performance material systems. Heat treatment is essential to achieve the required performance. Today, high performance gears are typically case hardened to achieve the best performance in service. Due to the meta-stable properties of martensite and retained austenite, especially for low alloy case hardening steels, the microstructure can degrade in service if the temperature equals or exceeds the previous tempering. As a result, the hardness and performance of the components will decrease. Alternative steel grades with increased alloy content can mitigate but are in most cases more expensive. Therefore, an increase in temperature resistance through heat treatment of the low-alloy steels would be of increased interest. To achieve a more stable microstructure state, new heat treatments and alternative microstructures must be considered. This presentation will address the tempering behavior of martensitic and bainitic microstructures under long-term thermal stress above typical tempering conditions at 210 °C for up to 200 hours. The microstructure degradation and hardness change are shown.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 327-331, September 30–October 3, 2024,
Abstract
View Paper
PDF
Advanced characterization techniques and modeling are used to get new insight on the microstructural evolutions occurring during the tempering of low-alloyed steels with initial martensitic microstructure. Tempering temperatures from 150°C to 600°C, are considered to make vary the metallurgical phenomena activated, form carbon segregation to defects to precipitation of different types of carbides (transition, cementite, alloyed). A large range of carbon compositions, from 0.1 to 0.7 wt.% are investigated, with the same main experimental technique: in situ HEXRD at synchrotron beamlines, with complementary post mortem fine-scale characterizations by TEM and 3D-APT. In the middle of this range (~0.3wt.%), the usual sequence is observed: successive precipitation of transition and cementite carbides. New observations concern the carbon concentrations outside this range. For high carbon concentrations (~0.6wt.%), the same sequence occurs but the martensite/ferrite matrix remains highly supersaturated in carbon compared to equilibrium, for a long time and even after the precipitation of cementite. For low carbon concentrations (~0.1wt.%) most of the carbon starts to segregate at defects (dislocations, lath boundaries). This enters in competition with the transition carbides which are almost fully hindered, whereas cementite precipitates afterwards. Two previous models from literature are combined to predict the concomitant kinetics of carbon segregation and precipitation. Segregation puts the transition carbides at a disadvantage with cementite and for this reason, the latter precipitates earlier than usually reported. The effects of nitrogen enrichment (up to ~0.4 wt.%N, context of carbonitriding thermochemical treatments) in austenite domain of stability (before the martensitic quench) are also investigated. In low-alloyed steel considered (23MnCrMo5), nitrides are formed upon enrichment (CrN, MnSiN 2 ). This has a strong impact on the precipitation sequence, compared to model systems previously investigated (Fe-N, Fe-C-N).
Proceedings Papers
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 60-66, October 17–19, 2023,
Abstract
View Paper
PDF
Quenched and tempered (Q&T) medium-C steels with various V and Mo additions were studied to understand the relationship between alloy carbide precipitation and hydrogen absorption and trapping behaviours. Heat treatments were selected in the temperature range favourable for V carbide formation, 500-600 °C, leading to higher hardness compared to similar V- and Mo-free alloys due to precipitation hardening. Heat-treated coupons were electrochemically charged to introduce hydrogen, and the bulk hydrogen concentration was measured using melt extraction analysis. Hardness and dislocation density were measured for each tempered condition to relate these properties to the hydrogen absorption and trapping behaviours of each material. Results indicate that dislocation density as well as V and Mo carbide precipitation increase the extent of hydrogen absorbed during charging and the amount of hydrogen remaining trapped after holding at ambient temperature for up to 168 h (1 week).
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 7-16, September 14–16, 2021,
Abstract
View Paper
PDF
Selective laser melting (SLM) is an additive manufacturing technique that can be used to make the near-net-shape metal parts. M2 is a high-speed steel widely used in cutting tools, which is due to its high hardness of this steel. Conventionally, the hardening heat treatment process, including quenching and tempering, is conducted to achieve the high hardness for M2 wrought parts. It was debated if the hardening is needed for additively manufactured M2 parts. In the present work, the M2 steel part is fabricated by SLM. It is found that the hardness of as-fabricated M2 SLM parts is much lower than the hardened M2 wrought parts. The characterization was conducted including X-ray diffraction (XRD), optical microscopy, Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to investigate the microstructure evolution of as-fabricated, quenched, and tempered M2 SLM part. The M2 wrought part was heat-treated simultaneously with the SLM part for comparison. It was found the hardness of M2 SLM part after heat treatment is increased and comparable to the wrought part. Both quenched and tempered M2 SLM and wrought parts have the same microstructure, while the size of the carbides in the wrought part is larger than that in the SLM part.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 132-137, September 14–16, 2021,
Abstract
View Paper
PDF
The Ultra Large Bearing (ULB) industry can increase the production performances by using induction heating on a full range of thermal processes. The paper presents the technological, economical, and process optimizations that can be achieved using induction heating technology in both hardening and tempering. Two different solutions are available for (seamless) race hardening: a high-power induction single shot process for small to medium size rings and induction seamless scan hardening for large sized bearings. The ultra-low frequency induction tempering process is described and compared with a traditional furnace. These technologies are presented and compared to show application ranges, specific features, metallurgical results, and efficiencies in processing and cost.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 153-161, September 14–16, 2021,
Abstract
View Paper
PDF
Phase transformation and temper response of three martensitic alloys were investigated as an important portion of fundamental metallurgical information database related to heat treatment design for engine component applications. A limited metallographic evaluation has also been carried out with selected temper response run samples in this study. Basic descriptions on adequate hardening and tempering parameter design were provided in terms of optimizing the intended performance with these alloys.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 327-333, September 14–16, 2021,
Abstract
View Paper
PDF
Vacuum carburizing 9310 gear steel followed by austenitizing, oil quench, cryogenic treatment, and tempering is known to impact the residual stress state of the material. Residual stress magnitude and depth distribution can have adverse effects on part distortion during intermediary and finish machining steps. This study provides residual stress measurement, microstructural, and mechanical property data for test samples undergoing a specific heat treat sequence. Test rings of 9310 steel are subjected to a representative gear manufacturing sequence that includes normalizing, rough machining, vacuum carburizing to 0.03”, austenitizing, quench, cryo-treatment, temper, and finish machining. The rings along with metallurgical samples are characterized after each step in order to track residual stress and microstructural changes. The results presented here are particularly interesting because the highest compressive residual stresses appear after removal of copper masking, not after quenching as expected. Data can be used for future ICME models of the heat treat and subsequent machining steps. Analytical methods employed include X-ray diffraction, optical and electron microscopy, and hardness testing.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 53-57, September 14–16, 2021,
Abstract
View Paper
PDF
This paper investigates the effect of various types of errors on the accuracy of finite-element models used to simulate electromagnetic induction heat treating processes. By comparing simulation outputs, it shows how FEA calculations are affected by incorrect material specifications, incorrectly entered data, imprecise data, misassigned elements, unsuitable mesh sizing, inadequate current or power, and failure to properly account for skin effect depth. The paper includes relevant data and equations in addition to computer generated plots.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 87-95, October 15–17, 2019,
Abstract
View Paper
PDF
Modeling of as-tempered hardness in steel is essential to understanding final properties of heat-treated components. Most of the tempering mathematical models derive a tempering parameter using Hollomon-Jaffe formulation. Some recent models incorporate chemical composition into the general Hollomon-Jaffe relationship. This paper compares model predictions with a substantial set of actual tempered Jominy End Quench bars and the hardness data from them. Improvements to the models and direction for future work are discussed.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 19-26, October 24–26, 2017,
Abstract
View Paper
PDF
A method of predicting tempered hardness of mixed microstructures has been formulated, which uses the quenched hardness and steel chemistry as independent variables. This calculation is based upon a method first proposed in 1947 by Crafts and Lamont for mixed microstructures and modified using the 1977 chemistry-based, tempered martensite hardness calculation of Grange, Hribal, and Porter. Tempered hardness predictions were examined using Jominy end-quench bars tempered between 204°C (400°F) and 649°C (1200°F). The measured Jominy hardness after tempering was used to make adjustments to the Crafts and Lamont parameters used in the hybrid model. Both plain carbon (SAE 1045) and low alloy (SAE grades 8620, 4130, 4142, and 5160) were used to evaluate the chemistry-based hardness prediction. In combination with a ASTM A255 Jominy hardenability calculation, the proposed calculation can be used to predict the quenched and tempered hardness profile of a round bar based upon chemistry, quench severity, and tempering temperature.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 138-145, October 24–26, 2017,
Abstract
View Paper
PDF
Quench and tempering heat treating operations for tubular products are relying more on induction equipment. The reasons for this can be traced to the lower energy costs for operating induction equipment compared to gas furnaces and the greater flexibility that the induction lines offer compared to their furnace counterparts in regards to recipe control and product mix. However, there are limitations and special considerations for induction heat treating equipment and the induction coils used for these operations. This paper reports on the design and operation of a new induction heat treating line for API 5CT grade L80 and P110 casing and tubing with upset ends. Upset ends pose special technical challenges for induction heating; the generation of a uniform temperature distribution relies heavily on proper coil design as well as line layout and heating time. Simulations of induction heating have provided predictions of heating profiles, and on-the-line testing allowed recipe refinement and validation of simulation models. Results from this case study help to increase confidence in this heat treating process as well as create an improved induction heating line layout for future applications.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 258-263, October 24–26, 2017,
Abstract
View Paper
PDF
Several case studies are presented illustrating issues that may be encountered when developing induction heat treating processes. The relationship of how induction heat treating parameters affect the metallurgy of production parts is examined in the form of case studies. These include the importance of normalized versus anneal starting microstructure as it relates to the ability of pearlite to transform to martensite within the short induction hardening process window. The influence of a non-uniform microstructure with proeutectoid grain boundary ferrite is discussed as it relates to prior structure. A team approach to balancing design specification with manufacturing cost and sound metallurgical practice is covered for an AISI 1060 steel channel component with complex inductor design. Another case study addresses how evaluating hardness in the as-quenched versus tempered condition can provide additional detail relating to back tempering in tooth by tooth hardened gears. The final example is the influence of frequency of case depth formation for an AISI 4140 cross roller section.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 305-310, October 24–26, 2017,
Abstract
View Paper
PDF
Martensitic steels must be tempered to increase their toughness and ductility. The tempering process requires heating from room temperature to the desired tempering temperature. In this paper, the effects of heating rates on carbide precipitate size distribution, chemistry, and precipitate density will be discussed. As-quenched martensite in AISI 4140 steel was heated to selected tempering temperatures in air furnaces as well as by induction. The heating rates for tempering vary from 30 seconds to 20 minutes. The experimental results are presented, and carbides were characterized using an extraction technique.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 493-501, October 24–26, 2017,
Abstract
View Paper
PDF
Dilatometry and transmission electron microscopy were used to characterize the effects of V content, Si content, tempering temperature and starting microstructure on the hardness and microstructural evolution of a 0.4 wt pct carbon steel after a simulated nitriding thermal cycle. When tempered at 500 °C, significant amounts of V are left in solution leading to precipitation during the nitride thermal cycle increasing the hardness and dilation strain. Increases in Si content also lead to higher core hardness after nitriding, but Si does not significantly increase dilation strain during nitriding. Bainite starting microstructures produced less dilation strain during nitriding compared to martensite starting microstructures when tempered at 500 °C.
1