Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 161
Surface hardening
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 16-22, September 30–October 3, 2024,
Abstract
View Paper
PDF
Metal additive manufacturing is a molding method with a high degree of freedom because it can be created from high-strength materials using by CAD, etc. In recent years, there is a demand for metal additive manufacturing due to the demand for more complex mechanisms and shape in industrial products. However, the mechanical properties of metal additive manufacturing materials as metallic materials are not clear compared to metallic materials by melting method. In this study, two types of metal additive manufacturing (AM) materials with different lamination directions are carburized and heat treated to clarify the differences from general metallic materials and to clarify the causes. The carburized AM materials were confirmed to have a surface hardness of 550HV and a total carburization depth of 200 μm, but the amount of carburization differed depending on the orientation. In addition, when analyzed with a SEM, a metal structure was formed in an equiaxed crystal shape, and segregation of metal elements was observed.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 23-28, September 30–October 3, 2024,
Abstract
View Paper
PDF
It is well known that the maximum prior austenite grain size after carburizing heat treatment is approximately positively correlated with the maximum shear strain in the case of simple deformation of pre process as cold working treatment. On the other hand, it is generally known that the maximum shear strain and the maximum grain size do not correspond when complex cold working is performed, but the reason of these phenomena is not well known. Then, it is necessary to investigate the relationship between the applied strain during cold working with multiple steps and prior austenite grain size after heat treatment(GG). In this study, we used a processing method called HPT processing, which introduces shear strain by torsion deformation under applying high hydrostatic pressure to the top and bottom of a disk-shaped sample using a die, and investigated how GG changes due to the accumulation of dislocations by focusing on the strain amount | ± Δ ε| given in one pass controlled by a processing path called Cyclic-HPT (c-HPT) (4) and the total strain amount 𝛴| ± Δ ε| given to the sample by the accumulation of one pass. As a result, when finer strain is applied, the grain size does not necessarily become smaller, but rather there are boundary conditions that indicate the positive and negative grain size with respect to the number of strains. Similarly, for the grain size distribution, an increase and decrease in grain size was observed with respect to radial distance, so there are boundary conditions that indicate the positive and negative grain size with respect to distance. From these results, it is believed that this may be the mechanism for grain growth behavior in the case of cold working, which involves complex deformation.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 35-40, September 30–October 3, 2024,
Abstract
View Paper
PDF
This presentation will discuss the most common types of induction tooling failures and the best practices to improve the performance and longevity of inductor coils, bus bars quenches and related tooling. We will discuss the harsh environment of a typical induction machine installation and what can be done to reduce contamination, which is the leading cause of tooling failure. Robust tooling designs and how water cooling is essential to longevity shall be discussed. Cooling water temperature and how the water is presented and routed through the tooling components and the impact this has on performance and longevity shall be discussed. We will discuss the use of proper materials, fittings and hoses which are often overlooked and can be detrimental to a process if not correctly selected. We will cover the induction machine and how it is essential to have a proper earth ground and the importance of proper machine fixturing and alignment. We shall discuss the importance of scheduled machine maintenance, scheduled service and calibration. The presentation will summarize the most common types of failures, how maintenance is essential for longevity and the importance of high-quality robust tooling.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 41-49, September 30–October 3, 2024,
Abstract
View Paper
PDF
Induction surface hardening is a process often used in industrial applications to efficiently increase the lifetime of components. Recently, this process has been enhanced with the inductive short time austempering process, creating a martensitic-bainitic microstructure. It is well-known that in homogeneous mixed microstructures, an optimally adjusted volume fraction of bainite can significantly increase the lifetime of the components even further. Regarding inductive short time austempering, there is a lack of knowledge in characterizing and differentiating graded microstructures, which occur due to the temperature gradients within the process. Therefore, three methods were investigated: the analysis of the grayscale profile of metallographic sections, the hardness profile and the full width at half maximum (FWHM) profile from the intensity curve (rocking curve) of the X-ray diffraction pattern. These methods were initially applied to homogeneous structures and evaluated. The findings were then transferred to graded microstructures. Finally, the graded microstructures could be differentiated both via the hardness profile and the FWHM value, while the grayscale analysis only allowed qualitative statements to be made. It became evident that both the volume fractions and their structure are crucial for subsequent mechanical characterization. Since the martensitic microstructure is easier to identify, it serves as a reliable reference for evaluating the mixed microstructure. In summary, these findings offer the foundation for further characterization of graded martensitic-bainitic mixed microstructures.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 73-78, September 30–October 3, 2024,
Abstract
View Paper
PDF
Laser heat treating on Automotive stamping and trim dies has resulted in overall cost reductions, shorter processing times, improved quality. These improved results have resulted in multiple advantages for Original Equipment Manufacturers (OEMs) that use Laser Heat Treating when compared with OEMs treating identical dies with conventional methods. This article highlights the technical aspects of Laser Heat Treating, cost saving, and latest advancements associated with this process.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 84-88, September 30–October 3, 2024,
Abstract
View Paper
PDF
Gas carburizing with quenching is one of the most useful heat treatment processes for steel parts. However, after quenching distortion is still occurs. The nitriding and nitrocarburizing are the surface hardening heat treatment methods with low distortion, but these methods require the long treating time to obtain a thick hardened layer. Austenitic nitriding and quenching (ANQ) solves these problems. In ANQ process, nitrogen is infiltrated into the steel parts in austenite phase, and they are quenched to harden. The ANQ process can also be applied to cheap low carbon steel such as the Cold Rolled Carbon Steel Sheet. In this study, the effect of ANQ on mechanical properties was examined. For infiltrating the nitrogen into the steel parts, the steel parts were heating to 750°C or higher in an ammonia atmosphere and heating to 750°C or higher in a nitrogen glow discharge. After the ANQ process, hardness profiles, structure, nitrogen and carbon concentration profiles were observed. Also, distortion, tribological properties, impact value and fatigue strength were examined. The effective case depth, which is treated by ANQ, is larger than the effective case depth of gas nitrocarburizing for same period of time. Distortion of ANQ is much smaller than that of gas carbonitriding, and it is almost equal with that of gas nitrocarburizing. The seizure load is same as with other surface hardening heat treatment processes. The wear loss of ANQ is a lower, in the amount of about 1/2 that of the carbonitrided specimen and 1/3 that of the gas nitrocarburized specimen. The ANQ is an effective heat treatment process for parts which require wear resistance. The tempering softening resistance is improved by nitrogen infiltration. ANQ also improves the impact value and fatigue strength.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 97-106, September 30–October 3, 2024,
Abstract
View Paper
PDF
High-entropy alloys (HEA) are multinary alloys obtained by blending at least five metallic elements in compositions close to their isoatomic fractions (5–35 at%). Generally, HEAs are produced by arc melting and casting. However, the cast specimens undergo phase separation and have a non-uniform microstructure. In contrast to ingot metallurgy, powder metallurgy has several advantages such as the possibility of alloying metals with high melting points and large differences in melting points and specific gravity. Therefore, we investigated the preparation of HEAs by mechanical alloying (MA), which produces an alloy powder with a uniform microstructure, followed by consolidation by spark plasma sintering (SPS). In this study, CoCrFeNiTi HEA sintered after MA-SPS was subjected to direct current plasma nitriding with screen (S-DCPN) to evaluate the characteristics of the nitrided layer as a function of nitriding temperature. Ball milling with heptane in an argon atmosphere using pure powders of Co, Cr, Fe, Ni, and Ti as raw materials was performed for 50 h. Subsequently, sintered compacts were prepared by SPS and treated with S-DCPN at 673, 773, and 873 K for 15 h in 75% N 2 –25% H 2 at a gas pressure of 200 Pa. A screen made of austenitic stainless steel SUS316L was installed as an auxiliary cathode to ensure uniform heating and nitrogen supply during the plasma nitridation process. Then, X-ray diffraction test, cross-sectional microstructure observation, surface microstructure observation, cross-sectional hardness test, roughness test, glow discharge optical emission spectrometry, corrosion test, and wear test were performed on the nitrided samples. The corrosion test results demonstrated that corrosion resistance increased with decreasing nitriding temperature. Furthermore, the results of the roughness and wear tests confirmed that abrasive wear occurred on the specimens nitrided at 873 K.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 107-113, September 30–October 3, 2024,
Abstract
View Paper
PDF
In recent years, physical vapor deposition and chemical vapor deposition (CVD) methods have made significant advancements due to the growing demand for surface modification technologies. This study focuses on depositing diamond-like carbon (DLC) as a thin, hard film using plasma-enhanced CVD. DLC possesses properties such as high hardness, low friction, wear resistance, and chemical stability. However, a drawback is low adhesion caused by residual stress and differences in hardness between the film and the substrate material. Therefore, efforts are underway to improve adhesion by introducing a DLC intermediate layer containing metallic elements to reduce residual stress or by applying treatments to harden the substrate material, such as nitriding or carburizing. Active screen plasma nitriding (ASPN) is a nitriding method that eliminates edge effects and electrically insulates the sample during the process. However, during nitriding, deposits can cover the sample and slow down the nitriding rate. To address this, a nitriding method called "direct-current plasma nitriding with screen (S-DCPN)" has been developed. It involves applying a voltage to the sample and screen during ASPN to remove deposits via sputtering action, thereby increasing the nitriding rate. Although the duplex process of ASPN and DLC-coating deposition has been studied, there are limited reports on the duplex process with S-DCPN. This study investigates the effect of intermediate layer composition on mechanical properties by forming a nitrided layer on the surface of SUS304 through S-DCPN treatment, depositing a Si-DLC intermediate layer with varying compositions, and applying a DLC film on the top surface. The results demonstrate that the lower the Si ratio in the Si-DLC intermediate layer, the better the wear resistance. Furthermore, the study reveals that wear resistance and adhesion were improved compared to samples without S-DCPN treatment.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 114-121, September 30–October 3, 2024,
Abstract
View Paper
PDF
Surface modification involves the chemical or physical impartation of enhanced functionality to the surface of materials, and has become increasingly important in recent years. Nitriding is a surface modification method that hardens the surface of metallic materials by causing nitrogen to permeate and diffuse into the surface to form various nitrides or by supersaturating a solid solution of nitrogen in the metal. This is effective in improving the hardness, corrosion resistance, and wear resistance. Plasma nitriding, a type of nitriding process, has several advantages, such as low energy consumption, short processing time, and low environmental impact. In contrast, the conventional plasma nitriding method forms plasma on the surface of the treated material, which may cause phenomena that lead to defects in the treated material. Therefore, the directcurrent plasma nitriding with screen (S-DCPN) method reduces these problems because plasma is formed not only on the treated material but also on the surface of the screen. Stainless steel has excellent corrosion resistance; however, nitriding treatment above a certain temperature reduces the corrosion resistance owing to chromium nitride precipitation. In this study, the S-DCPN treatment, a type of plasma nitriding method, was applied to form a thick nitrided layer without reducing corrosion resistance. The S-DCPN treatment was performed using ferritic stainless steel SUS430 as the sample and austenitic stainless steel SUS304 as the screen material at treatment temperatures of 633 and 653 K, treatment times of 5 and 15 h, a gas pressure of 200 Pa, and a gas composition of 75% N 2 - 25% H 2 . Consequently, the α N phase with supersaturated nitrogen solid solution was identified under all conditions. Nitrogen diffusion and hardness increased with increasing treatment temperature and time. In the corrosion tests, corrosion resistance improved under all conditions.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 132-138, September 30–October 3, 2024,
Abstract
View Paper
PDF
Heat treatment of steels is a process of modifying the mechanical properties by solid-state phase transformations or microstructural changes through heating and cooling. The material volume changes with phase transformations, which is one of the main sources of distortion. The thermal stress also contributes to the distortion, and its effect increases with solidstate phase transformations, as the material stays in the plastic deformation field due to the TRIP effect. With the basic understanding described above, the sources of distortion from a quench hardening process can be categorized as: 1) nonuniform austenitizing transformation during heating, 2) nonuniform austenite decomposing transformations to ferrite, pearlite, bainite or martensite during quenching, 3) adding of carbon or nitrogen to the material, and forming carbides or nitrides during carburizing or nitriding, 4) coarsening of carbide in tempered martensite during tempering, 5) stress relaxation from the initial state, 6) thermal stress caused by temperature gradient, and 7) nonhomogeneous material conditions, etc. With the help of computer modeling, the causes of distortion by these sources are analyzed and quantified independently. In this article, a series of modeling case studies are used to simulate the specific heat treatment process steps. Solutions for controlling and reducing distortion are proposed and validated from the modeling aspect. A thinwalled part with various wall section thickness is used to demonstrate the effectiveness of stepped heating on distortion caused by austenitizing. A patented gas quenching process is used to demonstrate the controlling of distortion with martensitic transformation for high temperature tempering steels. The effect of adding carbon to austenite on size change during carburizing is quantified by modeling, and the distortion can be compensated by adjusting the heat treat part size.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 139-144, September 30–October 3, 2024,
Abstract
View Paper
PDF
The purpose of this study is to clarify the mechanical properties of the expanded austenite (S phase) formed in austenitic stainless steel (ASS). A small thin rolled plate of SUS304 with 0.5 mm thickness was used as test sample. The test sample was nitrided by active screen plasma nitriding (ASPN) at low processing temperature of 400 °C and 450 °C during 4 h processing time. S phase was formed on the surface of the test sample. The surface hardness of ASPN sample was higher than that of untreated sample. Furthermore, tensile tests and fracture surface observations revealed that the tensile strength was also improved compared to untreated samples.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 227-233, September 30–October 3, 2024,
Abstract
View Paper
PDF
Steel hardening is a long-standing practice that has accompanied human development over the last three millennia. For hardening, steel is heated to a high temperature to form austenite and subsequently cooled. During cooling, austenite transforms into various microstructural products, e.g. grain boundary ferrite, Widmanstätten ferrite, massive ferrite, pearlite, upper bainite, lower bainite,… and martensite. Martensite is the hardest of these products and is obtained when the applied cooling rate exceeds a critical value. This critical cooling rate for martensite formation is determined by the chemistry of the steel and is significantly reduced by increasing the content of alloying elements. Cooling from the austenite region by immersing the parts in water, generally provides this cooling condition. The transformation that leads to martensite is called martensitic and, unlike all other transformations that occur in steel, it does not involve the diffusion of atoms. Martensitic transformations begin when a characteristic temperature, the martensite start temperature Ms is reached during cooling. Ms is essentially determined by the chemical composition of the steel. Subsequently, martensitic transformations continue during further cooling below Ms. In contrast, no transformation occurs when the steel is held isothermally below Ms, indicating that the transformation is time independent, i.e. athermal. Consistently, martensitic transformations would not be suppressible, not even by applying the most rapid cooling possible.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 281-287, September 30–October 3, 2024,
Abstract
View Paper
PDF
High-alloy steels, like Ferrium C64, are used in powertrain components due to their corrosion resistance and high temperature resistance properties. These steels undergo a tempering temperature that is well above traditional steel, and during this process alloy carbides or compounds form, increasing the materials hardness, mechanical strength, and high temperature resistance properties. In the early stages of tempering, softening occurs due to the formation and coarsening of iron carbide, followed by a hardening as the alloy elements combine to form nano-scale dispersoids. These alloy carbides block the path of dislocations in the grain, strengthening the material. At longer tempering times or high temperatures, the coarsening of these alloy carbides and compounds can cause softening. A predictive material model for the high-tempering response of steels is needed to ensure peak hardening properties are met. For a robust heat treatment model, the material response for every step of the process needs to be modeled. These material properties include austenitization rates and thermal expansion during heating, carbon diffusivity and saturation limits for carburization, phase transformation rates and thermal contraction rates per phase during cooling and quenching, deep-freeze kinetics for further martensitic transformation, tempering kinetics for formation of the tempered martensite phase, and carbide kinetics for formation, coarsening, and size. Additionally, mechanical properties of each phase as a function of carbon need to be defined to ensure the proper mechanical response during and after heat treatment. After the material model is developed it can be used to design and optimize the high-temperature tempering process for any part using the same material.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 288-296, September 30–October 3, 2024,
Abstract
View Paper
PDF
Carburizing and induction hardening are two surface heat treatments commonly used to increase wear resistance and fatigue performance of steel parts subject to cyclical torsional loading. It was originally hypothesized that performing an induction surface hardening heat treatment on parts previously carburized could provide further increased fatigue life, however initial torsional fatigue results from previous work indicated the opposite as the as-carburized conditions exhibited better torsional fatigue strength than the carburized plus induction surface hardened conditions. The aim of this work is to further elucidate these torsional fatigue results through metallography and material property characterization, namely non-martensitic transformation product (NTMP) analysis, prior austenite grain size (PAGS) analysis, and residual stress vs depth analysis using x-ray diffraction (XRD). A carburizing heat treatment with a case depth of 1.0 or 1.5 mm and an induction hardening heat treatment with a case depth of 0, 2.0, or 3.0 mm were applied to torsional fatigue specimens of 4121 steel modified with 0.84 wt pct Cr. The carburized samples without further induction processing, the 0 mm induction case depth, served as a baseline for comparison. The as-received microstructure of the alloy was a combination of polygonal ferrite and upper bainite with area fractions of approximately 27% and 73% respectively. The only conditions that exhibited NMTP were the as-carburized conditions. These conditions also exhibited larger average PAGS and higher magnitude compressive residual stresses at the surface compared to the carburized plus induction hardened conditions. The compressive residual stresses offer the best explanation for the trends observed in the torsional fatigue results as the conditions with NMTP present and larger PAGS exhibited the best torsional fatigue performance, which is opposite of what has been observed in literature.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 301-308, September 30–October 3, 2024,
Abstract
View Paper
PDF
Increasing power density and rotational speed pose significant challenges for transmission design, especially in the aerospace and electro mobility sectors. Due to increased energy input and reduced heat dissipation, higher operating temperatures occur in high performance gears. At higher temperatures, the hardness and microstructure of conventional bearing and gear materials are affected by annealing effects, which can reduce the load capacity of these components. Therefore, increased operating temperatures can only be considered if the components are made of special heat-resistant, high-performance material systems. Heat treatment is essential to achieve the required performance. Today, high performance gears are typically case hardened to achieve the best performance in service. Due to the meta-stable properties of martensite and retained austenite, especially for low alloy case hardening steels, the microstructure can degrade in service if the temperature equals or exceeds the previous tempering. As a result, the hardness and performance of the components will decrease. Alternative steel grades with increased alloy content can mitigate but are in most cases more expensive. Therefore, an increase in temperature resistance through heat treatment of the low-alloy steels would be of increased interest. To achieve a more stable microstructure state, new heat treatments and alternative microstructures must be considered. This presentation will address the tempering behavior of martensitic and bainitic microstructures under long-term thermal stress above typical tempering conditions at 210 °C for up to 200 hours. The microstructure degradation and hardness change are shown.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 309-311, September 30–October 3, 2024,
Abstract
View Paper
PDF
Liquid nitrocarburizing is a well-known surface treatment when it comes to tribological parts and systems. The surface layers formed through liquid nitrocarburizing processing (compound layer and diffusion zone) make it possible to combine the corrosion, wear, and fatigue resistance properties of the treated materials (mainly ferrous alloys, from low-carbon to high-alloy steels and even cast iron) while enhancing their tribological behavior. Based on its worldwide presence, its continuous improvement and high industrial maturity, HEF Groupe’s Liquid Nitrocarburizing is the technology ready for future with its CLIN 4.0 program and it ambitious ECOCLIN program which allow the recycling of wastes from nitriding installations and their transformation into directly reusable consumables. That is why HEF’s liquid nitrocarburizing is proven to be not only an alternative to other surface treatments (such as Chromium plating) on both technical aspects and price competitiveness but also a real solution answering the current environmental challenges. Thanks to the implementation of Life cycle Assessment methods, HEF’s liquid nitrocarburizing continuously improve its sustainability and continuously lower its impacts on global resources, making it an iterative routine to decrease environmental impact on all resources (Energy, water, raw materials,…)
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 312-315, September 30–October 3, 2024,
Abstract
View Paper
PDF
Additive manufacturing is increasingly used in a variety of applications. Directed Energy Deposition (DED) technology using powder feedstock enables the production of materials in combinations that would be very problematic using conventional technologies. DED is a technological process where the fed material is melted directly at the desired location using a laser beam. The research described here deals with the additive manufacturing and subsequent induction heat treatment of a functional deposited layer of M2 high-speed steel. Induction treatment has the advantage that only the functional layer of the component can be heat treated without affecting the base material. It is therefore possible to heat treat a combination of completely different materials with different properties without degrading the base material. Hardness values reached 950 HV (68 HRC) both after additive manufacturing and after additive manufacturing and induction treatment. Induction heat treatment of the deposited M2 layer ensured removal of traces of the original melt pools produced by the additive manufacturing. Investigation of the microstructure and mechanical properties of M2 tool steel after induction heat treatment produced by DED highlights its potential for high performance tooling and machining applications. The main objective of this research is to improve the final properties and tool life of forming tools when the tool is made of less expensive low-alloy steel and its functional layer is made of M2 high speed steel using additive manufacturing technology.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 316-320, September 30–October 3, 2024,
Abstract
View Paper
PDF
Thermochemical treatments like carburizing and carbonitriding allow to improve the properties in low-alloyed steels, which depend mainly on the distributions of residual stresses and microstructures. As the fatigue properties depend mainly on the latter, a fundamental understanding must be established regarding their formation during the cooling after the enrichment treatment. This study introduces an experimental and simulation analysis of microstructure and internal stresses evolutions and their couplings. Influence of the carbon and nitrogen enrichments is highlighted. An original experimental technique is introduced to follow in situ by High-Energy XRD the phase transformation kinetics and the evolutions of the internal stresses during cooling, inside laboratory scale samples with C/N composition gradients. The usual trends are confirmed regarding the carburizing: the carbon-enriched case is the last to undergo phase transformations. Due to the phase transformation strains, the surface ends up with compression residual stresses, whereas the center is put in tension. Conversely, for carbonitriding, unusual profiles of microstructures and residual stresses are observed. The presence of nitrogen induces a drastic loss of hardenability in the enriched case. This modifies the chronology of the phase transformations and this leads to tensile residual stresses at the surface for the studied cooling conditions. In the nitrogen-enriched case, a fine microstructure is formed during cooling and retained austenite remains, leading to a lower hardness than in the martensite layer beneath. A coupled thermal, mechanical and metallurgical model predicting the phase transformation kinetics and the evolutions of internal stresses is set up. It takes account of the local carbon and nitrogen concentrations in the case. For carburizing, predictions are in good agreement with experiment. Simulations for carbonitriding achieve to predict the tensile stresses in the nitrogen-enriched case, which are due to the loss of hardenability. In both cases, residual stresses come mostly from phase transformation plasticity strains.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 327-331, September 30–October 3, 2024,
Abstract
View Paper
PDF
Advanced characterization techniques and modeling are used to get new insight on the microstructural evolutions occurring during the tempering of low-alloyed steels with initial martensitic microstructure. Tempering temperatures from 150°C to 600°C, are considered to make vary the metallurgical phenomena activated, form carbon segregation to defects to precipitation of different types of carbides (transition, cementite, alloyed). A large range of carbon compositions, from 0.1 to 0.7 wt.% are investigated, with the same main experimental technique: in situ HEXRD at synchrotron beamlines, with complementary post mortem fine-scale characterizations by TEM and 3D-APT. In the middle of this range (~0.3wt.%), the usual sequence is observed: successive precipitation of transition and cementite carbides. New observations concern the carbon concentrations outside this range. For high carbon concentrations (~0.6wt.%), the same sequence occurs but the martensite/ferrite matrix remains highly supersaturated in carbon compared to equilibrium, for a long time and even after the precipitation of cementite. For low carbon concentrations (~0.1wt.%) most of the carbon starts to segregate at defects (dislocations, lath boundaries). This enters in competition with the transition carbides which are almost fully hindered, whereas cementite precipitates afterwards. Two previous models from literature are combined to predict the concomitant kinetics of carbon segregation and precipitation. Segregation puts the transition carbides at a disadvantage with cementite and for this reason, the latter precipitates earlier than usually reported. The effects of nitrogen enrichment (up to ~0.4 wt.%N, context of carbonitriding thermochemical treatments) in austenite domain of stability (before the martensitic quench) are also investigated. In low-alloyed steel considered (23MnCrMo5), nitrides are formed upon enrichment (CrN, MnSiN 2 ). This has a strong impact on the precipitation sequence, compared to model systems previously investigated (Fe-N, Fe-C-N).
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 366-369, September 30–October 3, 2024,
Abstract
View Paper
PDF
Anti-wear, anti-galling and scratch resistance are well-known properties associated with FNC processes. The marked demand for expansion of the scope of processes in equipment available, has led to the development of tailored FNC process for application to low alloyed steel, and alloyed steel. The process had to be oxygen free, as the equipment is also applied in expanded austenite processes for corrosion resistant alloys. Utilizing our mass flow controller equipped furnaces the tight control of the parameters is possible resulting in high repeatability and a consistent compound layer formation. The process has been applied to a number of different alloys, showing good results for unalloyed steels and steels in quenched and tempered condition.
1