Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Press quenching
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 237-244, October 15–17, 2019,
Abstract
View Paper
PDF
Press quenching is often used to harden parts that are sensitive to distortion, but it is a difficult process to control due to the effects of tooling and the relatively large number of process parameters. In this paper, the authors show how they use finite element analysis to optimize the process and tooling design for a spiral bevel gear made of carburized 9310 steel. Several designs adaptations are assessed, one of which is shown to minimize radial shrinkage and taper distortion in the inner diameter of the bore.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 180-184, October 24–26, 2017,
Abstract
View Paper
PDF
This paper will present the advantages and disadvantages of quenching media options like HPGQ (high pressure gas quenching), Oil and Press Quenching, Austempering (salt) for steel, ADI (austempered ductile iron) and aluminum to achieve certain targets relating to automotive component heat treating. Each heat treating/quenching process provides unique solutions for automobile designers and plant engineers. However, there likely is no single process or material that provides all of the answers that one would desire. Therefore, what process or combination of processes will satisfy the overall need? Detail will be discussed that outlines how OEM’s and heat treaters can and do take advantage of a particular hardening process.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 233-251, October 20–22, 2015,
Abstract
View Paper
PDF
Press quenching is a specialized quenching technique used in heat treating operations to minimize the distortion of complex components such as spiral bevel gears and high quality bearing races. The quenching machine is designed to control the geometrical characteristics of components such as out-of-round, flatness, and (if the tooling is designed to accommodate it) taper. The achievement of final dimensional tolerances is accomplished through a trial and error process where the incoming machined sizes of the components are adjusted based upon measurement data taken from the initial sets of quenched and tempered components that have already been processed through the press quenching operation. Oil flow rates can be altered during the different stages of the quenching cycle, and through the use of specialized tooling the oil flow pathways can be selectively adjusted to meter the oil flow towards specific areas of the part surface while baffling it away from others in order to provide a more uniform overall quench. Complex metallurgical changes take place during austenitizing and quenching, resulting in corresponding mechanical property changes. Accompanying these changes are the generation of thermal and transformation induced stresses, which produce in-process and final residual stresses. During press quenching, dimensional restrictions add additional complexity to the combined effects of thermal and mechanical process sensitivities on these stresses. And if the stresses are severe enough, quench cracking can result. In this investigation the quench cracking of an asymmetrical AISI 52100 bearing ring is evaluated through physical experiments and through corresponding heat treatment process modeling using DANTE. The effects of quench rate, die load pulsing, and several other process variables are examined experimentally and/or analytically to illustrate how they can impact the resulting stresses generated during the press quenching operation.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 525-530, October 20–22, 2015,
Abstract
View Paper
PDF
Press quenching is an effective method to improve the strength and control the distortion of auto gears. However, it can be challenging to understand, predict, and further minimize the deformation of circular-arc bevel gears in industrial applications because of multiple influencing factors. This paper reports on work to build a comprehensive model with phase changes to reproduce the gear quenching process with consideration of the quenching machine, process parameters, and variation of steel compositions. The phase content and temperature history predicted by the model agree with the gear-quenching experimental results.