Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 29
Gas quenching
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 1-10, May 6–7, 2025,
Abstract
View Papertitled, Distortion Minimization Using DCGQ Process for Reduced Cost and Improved Quality
View
PDF
for content titled, Distortion Minimization Using DCGQ Process for Reduced Cost and Improved Quality
A patented DANTE Controlled Gas Quench (DCGQ) process was developed for high precision distortion control during quench hardening. The DCGQ process follows a recipe of quenching time and the ambient gas temperature designed by computer modeling, with a specified maximum allowed temperature difference in the part section during the martensitic transformation.
Proceedings Papers
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 78-82, May 6–7, 2025,
Abstract
View Papertitled, Thermo-Metallo-Mechanical Modeling of Case-Hardened Steel Parts for Prediction of Distortions during Intermittent Gas Quenching
View
PDF
for content titled, Thermo-Metallo-Mechanical Modeling of Case-Hardened Steel Parts for Prediction of Distortions during Intermittent Gas Quenching
To develop a behavior model, properties such as Young's modulus, viscous stress, kinematic hardening, isotropic hardening, yield strength and transformation-induced plasticity parameter (TRIP) for austenite and martensite were determined using a specially developed experimental set-up.
Proceedings Papers
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 119-128, May 6–7, 2025,
Abstract
View Papertitled, Understanding Principles of Quench Distortion of Carburizing Steel Parts Using a Single Side Carburized Almen Strip and Computer Modeling
View
PDF
for content titled, Understanding Principles of Quench Distortion of Carburizing Steel Parts Using a Single Side Carburized Almen Strip and Computer Modeling
In this study, a single-sided carburized Almen strip made of Pyrowear 675 is used to investigate the effect of phase transformations on quench hardening distortion. Computer modeling is used to analyze the collected experimental data and demonstrate the underlying principles of distortions and residual stress.
Proceedings Papers
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 182-191, May 6–7, 2025,
Abstract
View Papertitled, Reducing Heat Treat Distortion with Repeating Precision by Use of Four-Dimensional High Pressure Gas Quenching
View
PDF
for content titled, Reducing Heat Treat Distortion with Repeating Precision by Use of Four-Dimensional High Pressure Gas Quenching
Oil, polymer, and gas quenching have long been used due to their effectiveness in cooling components rapidly to achieve the desired microstructure. However, they often cause distortion, complicating post-manufacturing corrections. A newer approach, Four-Dimensional Quenching (4DQ), uses high-pressure gas as the quenching medium and allows precise control over gas flow. This method significantly reduces distortion and ensures consistency across components.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 160-166, September 30–October 3, 2024,
Abstract
View Papertitled, Advancements in Steel Hardening Distortion Control Using a 4-Dimension High-Pressure Gas Quenching (4DQ) System
View
PDF
for content titled, Advancements in Steel Hardening Distortion Control Using a 4-Dimension High-Pressure Gas Quenching (4DQ) System
It is well known that distortion has and continues to present a challenge to the heat treater when hardening steel. However, recent advances in quenching technology are improving the opportunity for improved distortion control. 4 Dimension High-Pressure Gas Quenching (4DQ) is a unique gas quenching process that uses both quenching chamber design and part motion to minimize distortion during the quenching process. To understand 4DQ’s potential, the challenges of traditional batch quenching and press quenching techniques will be explored, emphasizing issues such as geometric distortion, residual thermal stresses, non-uniform microstructure transformation, safety, environmental, and handling concerns. In contrast, 4DQ is a process that enhances quenching uniformity and minimizes distortion by use of a specialized cooling chamber. Within the chamber it provides three-dimensional (3D) quenching by enveloping the part at specific areas with cooling gas while introducing the fourth dimension (4D) of part rotation during quenching that further optimizes quench uniformity. 4DQ gives the ability to “engineer” the quenching process by controlling quench pressure, gas velocity, gas manifold design, table rotation, table oscillation, and time-dependent gas flow. The system’s flexibility allows users to customize the quenching process for reduced distortion, repeatability, and precise accuracy. A case study on hypoid hears and coupling sleeves will demonstrate the effectiveness of the 4DQ system in minimizing distortion and achieving dimensional consistency. Results illustrate the system’s advantages over traditional quenching methods in terms of quality, repeatability, and cost-effectiveness. Considering the challenges of steel hardening processes, the 4DQ system has the potential to be a transformative solution for achieving enhanced quenching uniformity and reduced heat treatment distortion in manufacturing scenarios.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 212-219, September 30–October 3, 2024,
Abstract
View Papertitled, Coupled CFD and Part Distortion Modeling for Gas Quenching Applications
View
PDF
for content titled, Coupled CFD and Part Distortion Modeling for Gas Quenching Applications
Manufacturers regularly employ finite-element (FE) process modeling tools for the simulation of heat treatment applications, such as quenching. These tools may utilize thermal, mechanical and microstructural calculations in the analysis of part distortion and residual stresses. Heat treatment modeling workflows are challenged by the requirement for user-provided heat transfer boundary conditions, which vary based on part geometry and process parameters. Representative Heat Transfer Coefficients (HTCs) are typically reversed-engineered using experimental thermocouple data, thermal simulations and inverse optimization methods. This paper will present ‘state of the art’ developments integrating computational fluid dynamics (CFD) capabilities into the heat treat modeling environment of the DEFORM system. It will describe how CFD and thermal modeling of a quench medium is being coupled with deformation and heat transfer modeling of a part through the use of CFD-calculated, local heat transfer boundary conditions. Studies verifying the implemented CFD methods against published literature will be summarized. Application examples will show how residual stress and distortion in parts, during single-part or batch gas quenching, is made possible by coupled CFD and thermo-mechanical process modeling tools.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 187-195, September 14–16, 2021,
Abstract
View Papertitled, Fatigue Performance of Low Pressure Carbonitrided 20MnCr5 and SAE 8620 Steel Alloys
View
PDF
for content titled, Fatigue Performance of Low Pressure Carbonitrided 20MnCr5 and SAE 8620 Steel Alloys
Low pressure carbonitriding and pressurized gas quenching heat treatments were conducted on four steel alloys. Bending fatigue tests were performed, and the highest endurance limit was attained by 20MnCr5+B, followed by 20MnCr5, SAE 8620+Nb, and SAE 8620. The differences in fatigue endurance limit occurred despite similar case depths and surface hardness between alloys. Low magnitude tensile residual stresses were measured near the surface in all conditions. Additionally, nonmartensitic transformation products (NMTPs) were observed to various extents near the surface. However, there were no differences in retained austenite profiles, and retained austenite was mostly stable against deformation-induced transformation to martensite during fatigue testing, contrasting some studies on carburized steels. The results suggest that the observed difference in fatigue lives is due to differences in chemical composition and prior austenite grain size. Alloys containing B and Nb had refined prior austenite grain sizes compared to their counterparts in each alloy class.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 263-270, September 14–16, 2021,
Abstract
View Papertitled, Process to Minimize Distortion during High Pressure Gas Quenching Processes
View
PDF
for content titled, Process to Minimize Distortion during High Pressure Gas Quenching Processes
A gas quenching method was developed by DANTE Solutions, in conjunction with the U.S. Army Combat Capabilities Development Command Aviation & Missile Center (DEVCOM AvMC), to control distortion in difficult to quench geometries. This new method addresses the nonuniform cooling inherent in most gas quenching processes. A prototype unit was constructed and tested with the aim of controlling the martensite formation rate uniformity in the component being quenched. With the ability of the DANTE Controlled Gas Quenching (DCGQ) unit to control the temperature of the quench gas entering the quench chamber, thermal and phase transformation gradients are significantly reduced. This reduction in gradients yields a more uniform phase transformation, resulting in reduced and predictable distortion. Being able to minimize and predict distortion during gas quenching, post heat treatment finishing operations can be reduced or eliminated, and as such, fatigue performance can be improved. This paper will discuss the prototype unit performance. Mechanical testing and metallographic analysis were also performed on Ferrium C64 alloy steel coupons and will be discussed. The results obtained showed that the slower cooling rate provided by the prototype did not alter the microstructure, hardness, strength, ductility, toughness, or residual stress of the alloy.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 4-8, September 14–16, 2021,
Abstract
View Papertitled, Advances in Low Pressure Carburizing and High-Pressure Gas Quenching
View
PDF
for content titled, Advances in Low Pressure Carburizing and High-Pressure Gas Quenching
Low pressure carburizing (LPC) in combination with high-pressure gas quenching (HPGQ) is a robust and versatile case hardening technology. This paper shows how recent advancements in LPC and HPGQ are being employed in the heat treatment of automotive and aerospace components. Significant progress has been made in areas such as fixturing, load densities, cycle times, distortion control, automation, traceability, and the integration of heat treatment into manufacturing lines. Practical applications are shown for both multiple- and single-layer treatment.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 111-113, September 14–16, 2021,
Abstract
View Papertitled, Gas Cooling – Is Pressure or Velocity Most Important?
View
PDF
for content titled, Gas Cooling – Is Pressure or Velocity Most Important?
This paper presents the results of a study examining the cooling rates of two vacuum high-pressure gas quenching furnaces: a large 10-bar furnace equipped with a 600-hp blower motor and a smaller 10-bar furnace with a 300-hp motor. In comparing critical cooling temperatures for H13 in the 1850°F to 1300°F range, the furnace that is almost three times larger in volume (110 vs. 40 ft 3 of hot zone) cooled the same workload almost identically to smaller unit. The test results clearly show that gas flow, or velocity, is more meaningful than pressure when it comes to cooling rate.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 106-114, October 15–17, 2019,
Abstract
View Papertitled, Effects of Rapid Induction Heating on Transformations in 0.6% C Steels
View
PDF
for content titled, Effects of Rapid Induction Heating on Transformations in 0.6% C Steels
Rapid induction hardening of martensitic steel can attain the very high strength levels needed for light-weighting components subjected to high operating stresses. Specimens of martensitic 0.6% C steels were heat treated using a dilatometer to investigate the effects of heating rates of 5 to 500 °C/s to temperatures of 850 to 1050 °C on the transformation to austenite and subsequent transformation to martensite during quenching. Selected specimens were quenched after partial transformation to austenite to assess the initial cementite precipitate size formed in ferrite during heating. Other specimens were isothermally held at the austenitizing temperature to assess cementite dissolution rates. Higher heating rates increased the Ac1 and Ac3 temperatures, and lowered the Ms temperature. Alloy content and prior microstructure also influenced the transformation temperatures.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 136-145, October 15–17, 2019,
Abstract
View Papertitled, Short Time Dilatometry Quench System Analyses
View
PDF
for content titled, Short Time Dilatometry Quench System Analyses
This paper investigates the factors that influence quenching rates and temperature distributions in steel during dilatometry testing. In a prior study, the authors assessed the performance of the cooling system in a widely used dilatometer. The goal of the current work is to develop a cooling strategy that provides more uniform and possibly faster cooling in the same system. Several alternate quench concepts are analyzed, the most promising of which uses water-cooled tubes to deliver high velocity gas through a series of jets axially aligned with the test sample. The proposed cooling apparatus and its effect on the induction heating process are assessed using CFD, electromagnetic, and thermal analyses.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 228-236, October 15–17, 2019,
Abstract
View Papertitled, Causes of Distortion during High Pressure Gas Quenching Process of Steel Parts
View
PDF
for content titled, Causes of Distortion during High Pressure Gas Quenching Process of Steel Parts
This paper presents a computational approach for assessing the potential for distortion when using high pressure gas to quench steel parts. It explains how to account for component geometry, heat transfer coefficient, gas temperature and velocity, heating and cooling rates, and phase transformations. The authors employ finite element modeling methods to determine local phase fraction and displacement in a Ferrium C64 disk for different quench pressures. Simulations at timed intervals show how distortion and phase fraction progress in different areas of the disk and along the edges of an off-center bore. The causes of distortion are examined and explained using the model, with insights into why the cooling rate has a nonlinear relation with distortion.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 245-252, October 15–17, 2019,
Abstract
View Papertitled, Advanced Distortion Control for Heat Treated Components
View
PDF
for content titled, Advanced Distortion Control for Heat Treated Components
This paper describes the inner workings of a gas quenching chamber and assesses its potential for high-volume production of precision gears. The cooling manifold in the chamber surrounds the part, which sits on a rotating table. This ensures uniform flow of cooling gas across the top, bottom, and sides of the part and achieves uniform and repeatable quenching results. In addition, because the cooling nozzles can be adjusted to fit the geometry and size of the part, distortion can be effectively controlled.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 372-377, October 15–17, 2019,
Abstract
View Papertitled, High Pressure Gas Quenching Evolution
View
PDF
for content titled, High Pressure Gas Quenching Evolution
This paper reviews several recent advancements in high pressure gas quenching technology along with the impact of new higher hardenability steels. With design upgrades and improved gas flow and heat removal, a wider variety of materials, part geometries, and load sizes can now be gas quenched.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 39-43, October 24–26, 2017,
Abstract
View Papertitled, The Use of Low Pressure Carburizing and High Pressure Gas Quenching for In-Line Heat Treat Processing
View
PDF
for content titled, The Use of Low Pressure Carburizing and High Pressure Gas Quenching for In-Line Heat Treat Processing
The evolution of Low Pressure Vacuum Carburizing in the automotive industry is well embedded in assembly plants with continuous batch loading. This batch loading, which causes a need for high cost WIP (work in progress), can now be reduced with the Low Pressure Vacuum Carburizing furnace equipment being sized to fit into single piece flow line with small batches. This presentation will look into the recent integration of heat treatment for in-line machining cells and the overall influences for the customer to provide equipment for heat treating in-line. These details will be compared to batch or continuous batch heat treatment as we know it today in the automotive industry. High Pressure gas quenching will be illustrated in both in-line and continuous batch integration.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 180-184, October 24–26, 2017,
Abstract
View Papertitled, Automotive Designers and Heat Treaters Have Choices—Pros and Cons of Competing Hardening Processes and Materials
View
PDF
for content titled, Automotive Designers and Heat Treaters Have Choices—Pros and Cons of Competing Hardening Processes and Materials
This paper will present the advantages and disadvantages of quenching media options like HPGQ (high pressure gas quenching), Oil and Press Quenching, Austempering (salt) for steel, ADI (austempered ductile iron) and aluminum to achieve certain targets relating to automotive component heat treating. Each heat treating/quenching process provides unique solutions for automobile designers and plant engineers. However, there likely is no single process or material that provides all of the answers that one would desire. Therefore, what process or combination of processes will satisfy the overall need? Detail will be discussed that outlines how OEM’s and heat treaters can and do take advantage of a particular hardening process.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 387-388, October 24–26, 2017,
Abstract
View Papertitled, A New Test Method to Characterize Heat Transfer Coefficient Distribution in Industrial Gas Quenching Systems
View
PDF
for content titled, A New Test Method to Characterize Heat Transfer Coefficient Distribution in Industrial Gas Quenching Systems
Gas quenching is drawing increasing attention within the heat treat industry. The heat transfer coefficient (HTC) for gas quenching can reach 2000 when using high pressure and high velocity nitrogen, helium, or mixtures of these gases. The HTC in water quenching is between 3000 and 4000. The lower HTC of gas quenching may result in workpieces with less distortion and residual stress after quenching. Compared to water, polymer, and oil quenching, gas quenching is environmentally friendly, and the surface of the part is clean after quenching.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 534-540, October 24–26, 2017,
Abstract
View Papertitled, True Single-Piece Flow Case Hardening for In-Line Manufacturing
View
PDF
for content titled, True Single-Piece Flow Case Hardening for In-Line Manufacturing
Case hardening by carburizing is the most common heat treatment in mass production, which relies on atmosphere, or vacuum carburizing followed by oil or gas quenching and finally by tempering. Parts being heat-treated undergo the process in a configuration of a batch consists of hundreds or even thousands pieces. Under these circumstances, individual parts can’t help but be exposed to different process parameters in terms of temperature, atmosphere and quenching depends on their position within the batch. Parts near the outer portion of the load see a more rapid rise in temperature, are first exposed to the carburizing atmosphere and are more effectively quenched than parts located in the center of the batch. This can lead to significant variation from part to part and load to load; the resultant effective case depth deviation can be as high as 50%. Similarly, during quenching from hardening temperature distortion becomes highly unpredictable and unrepeatable. Modern industry demands greater precision and repeatability of results beyond those achievable by so-called traditional batch or continuous technologies and their associated equipment. Elimination of batches and focus on individual parts is the only true way to advance the industry. The article will introduce the first operational system for truly single-piece flow method for case hardening by low-pressure carburizing and hardening by high-pressure gas quench. The system treats each part individually and as such provides virtually identical process parameters, which results in extremely accurate and repeatable results. Quenching one part at a time in a specially design chamber, achieves more precise control and significantly reduces distortion so as to all make it possible to avoid post heat treatment hard machining operations. This single-piece flow heat treatment method is easily adapted into manufacturing and can be directly integrated into in-line manufacturing operations, working directly with machining centers. Materials handling and logistical issues are eliminated thus saving time and reducing unit cost. The results achieved on series of automotive gears will be reported and demonstrate incredible accuracy and repeatability, while significantly reducing distortion. Productivity and process costs prove the system to be highly competitive with other technologies. These proven advantages and savings.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 541-544, October 24–26, 2017,
Abstract
View Papertitled, Low-Pressure Carburizing of Powder Metal Components
View
PDF
for content titled, Low-Pressure Carburizing of Powder Metal Components
Transmission-manufacturers constantly need to adapt their products and manufacturing technologies to meet future’s market and legislation requirements such as cost-efficiency, running-smoothness and drivetrain-agility. Components made of powder metal (“PM-components”) are established in today’s transmission industry as a cost efficient alternative even for high strength and high precision powertrain applications. The PM-material and the applied heat treatment processes have made significant improvements in recent years. One major step in the development was to combine the freedom in alloying-concepts of the PM-technology with the advantages of the Low Pressure Carburizing (LPC) heat treatment process. PM-components must be case-hardened to meet design-intent regarding wear resistance and strength. But when case hardening PM-components using a conventional atmospheric carburizing process, this can lead to serious overcarburizing and even massive carbide-formation. Another major challenge when using the conventional process is to clean PM-parts after the traditional oil-quenching process. Therefore, the process of Low Pressure Carburizing (LPC) combined with High Pressure Gas Quenching (HPGQ) was adapted to the special needs of serial production of PM-components. This heat treatment process offers significant benefits, such as: - no overcarburizing and excessive carbide-formation due to precise diffusion of carbon into the components - reproducible microstructures from part to part and from load to load - clean and shiny parts after quenching - superior control of distortion, - no intergranular oxidation, - better fatigue resistance and - the benefits of an environmentally friendly process. Over the past 25 years, Stackpole and ALD worked on powder metal technology and advanced heat treatment processes. Material, process and equipment have seen significant improvements over the last decades to offer true benefits. This presentation will give an insight into benefits and challenges of PM-components heat treated in low pressure with subsequent gas quenching. The paper refers to the industrial series production of components and it refers to R&D - case studies as well.
1