Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-12 of 12
Powder bed fusion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 51-57, May 6–7, 2025,
Abstract
View Papertitled, The Influence of Geometrical Features on Residual Stresses in Additively Manufactured 316L for Lightweight Engineering
View
PDF
for content titled, The Influence of Geometrical Features on Residual Stresses in Additively Manufactured 316L for Lightweight Engineering
The localized heat input during laser powder bed fusion (PBF-LB) additive manufacturing creates unique thermal histories resulting in distinctive residual stress distributions and microstructures that affect fatigue performance. This study examines the relationship between geometrical features and residual stresses in 316L stainless steel components with topology-optimized geometries such as Y-struts and various node shapes.
Proceedings Papers
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 68-77, May 6–7, 2025,
Abstract
View Papertitled, Influence of As-Built Microstructure and Thermal Post-Processing on the Fatigue Strength of AISI 4140 Manufactured by Laser Powder Bed Fusion
View
PDF
for content titled, Influence of As-Built Microstructure and Thermal Post-Processing on the Fatigue Strength of AISI 4140 Manufactured by Laser Powder Bed Fusion
This study examines the impact of thermal post processing, specifically induction hardening and tempering, on the fatigue performance of laser powder bed fusion (PBF-LB) manufactured AISI 4140 steel. Results highlight the importance of porosity control, with induction hardening effectively addressing near-surface porosity issues in non-machined parts.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 50-56, September 30–October 3, 2024,
Abstract
View Papertitled, Transformation Induced Plasticity during Precipitation Strengthening of Maraging Steels
View
PDF
for content titled, Transformation Induced Plasticity during Precipitation Strengthening of Maraging Steels
Effective heat treatment is essential for optimizing the properties of steels in various applications. Understanding the evolution of steel microstructure during intrinsic or post-heat treatment, along with managing distortions and residual stresses, is crucial for ensuring component usability. In laser-based additive manufacturing, high temperature gradients and cooling rates induce residual stresses, impacting the heat-affected zones. However, there remains a gap in understanding how stress influences precipitation during heat treatment, particularly regarding transformation-induced plasticity (TRIP), where a stress triggers deformation during phase transformation. This study aims to investigate TRIP effects during the aging of maraging steels, commonly employed in laser-based powder bed fusion. During the experiments, the steels were continuously aged under varying compression stresses. By isolating TRIP strain from total strain, the study establishes a relationship between maximum TRIP strain after phase transformation and applied stress, defining specific TRIP constants for each steel. The presence of TRIP strain has been confirmed during short time continuous aging treatments, indicating its significance even in the initial stages of the heat treatment process. While the applied stress level does not affect hardness, significant differences in maximum hardness values after aging were observed among the investigated materials. Furthermore, a comparative analysis of different maraging steels revealed a positive correlation between the TRIP constant and the amount of precipitation, and consequently, hardness. These findings confirm the role of TRIP in precipitate formation in maraging steels and provide a foundation for further understanding and predicting post-heat treatment material states.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 167-172, September 30–October 3, 2024,
Abstract
View Papertitled, Sub-Zero Treatment of 17-4PH Stainless Steel Manufactured by Laser Powder Bed Fusion
View
PDF
for content titled, Sub-Zero Treatment of 17-4PH Stainless Steel Manufactured by Laser Powder Bed Fusion
Additively manufactured (AM) metals require a modified heat treatment to accommodate for slight differences in composition caused by powder atomization and cover gas used in the manufacturing process. 17-4PH stainless steel (17-4PH) is a precipitation hardening steel which hardens through the formation of Cu precipitates in a martensitic matrix during aging treatment. The powders used in Laser Powder Bed Fusion (LPBF) fabrication of 17-4PH are typically spray atomized using N 2 cover gas, which is associated with a certain amount of nitrogen uptake. Nitrogen is a potent austenite stabilizer and will lower the martensite start temperature of the steel. To counteract the effect of nitrogen, a sub-zero heat treatment can be introduced to promote a more complete transformation into martensite. In this work, the effect of nitrogen on the heat treatment response of 17-4PH is investigated through comparing standard wrought, nitrogen loaded wrought, and LPBF 17-4PH. In particular, the effect of introducing a subzero treatment is addressed. After quenching from the solutionizing step (austenitization) LPBF fabricated 17-4PH was cold-treated in different combinations of dry ice (-78 °C) and boiling nitrogen (-196 °C). Subsequently, these conditions were aged in the conventional way. The sub-zero treatments were compared with the conventional heat treatment procedure, which does not entail a sub-zero step. In addition, phase transformations (above room temperature) were monitored in-situ using dilatometry. Finally, hardness tests and XRD analysis were performed to characterize the final microstructure. It is demonstrated that sub-zero treatment can be an effective route to address the problems associated with the additional nitrogen present in LPBF 17-4PH fabricated parts.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 183-192, September 30–October 3, 2024,
Abstract
View Papertitled, Optimization of the Post-Heat Treatment of Additively Manufactured IN625
View
PDF
for content titled, Optimization of the Post-Heat Treatment of Additively Manufactured IN625
Nickel-based Inconel 625 is widely used for both low and high-temperature applications. It has several applications in aerospace, marine, chemical, and petrochemical industries due to its high strength, corrosion resistance, good formability, and weldability. With the molten pool’s rapid solidification during laser powder bed fusion (LPBF), the resulting microstructures differ from those expected in equilibrium conditions. Residual stresses, microsegregation, anisotropy, undesirable phases, layered structure, and lower mechanical properties are the challenges that must be addressed before LPBF-ed Inconel 625 parts can be industrially implemented. Heat treatment of Inconel 625 after the LPBF process is widely discussed in the literature, and the proposed heat treatment processes do not address all the challenges mentioned above. For this reason, specific heat treatments should be designed to achieve desired mechanical properties. Five different high-temperature heat treatment procedures were developed and tested in recent work in comparison with the standard heat treatment for wrought alloy (AMS 5599), to study the effect of various heat treatment parameters on the type of precipitates, grain size, room, and elevated temperature mechanical properties, and to develop an elevated-temperature tensile curve between room temperature (RT) and 760°C of LPBF-ed Inconel 625. Four heat treatment procedures showed complete recrystallization and the formation of equiaxed grain size containing annealed twins and carbide precipitates. However, either eliminating the stress relief cycle or conducting it at a lower temperature resulted in microstructures having the same pool deposition morphology with grains containing dendritic microstructure and epitaxial grains. Two different grain sizes could be obtained, starting with the same as-built microstructure by controlling post-process heat treatment parameters. The first type, coarse grain size (ASTM grain size No. G 4.5), suitable for creep application, was achieved by applying hot isostatic pressing (HIP) followed by solution annealing. The second type, fine-grain size (ASTM grain size No. G 6), preferable for fatigue properties, was achieved by applying solution annealing followed by HIP. The mechanical properties at room and elevated temperature 540°C are higher than the available properties in the AMS 5599 for wrought Inconel 625 while maintaining a higher ductility above the average level found in the standards. It can be concluded that the performed heat treatment achieves higher mechanical properties. The values of ultimate tensile strength (UTS), yield strength (YS), elongation, and reduction of area percentages are similar in the XZ and XY orientations, revealing the presence of isotropic microstructure. The ultimate tensile strength values show an anomalous behavior as a function of the temperature. From the room temperature until around 500°C, there occurs a decrease in the yield strength and a slight increase up to 600°C, decreasing sharply at 700°C. An anomaly is also present in relation to the elongation, with a significant decrease in the elongation at temperatures after 600°C.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 1-6, September 14–16, 2021,
Abstract
View Papertitled, Characterization of the Role of Post-Build Heat Treatment on the Localized Corrosion Susceptibility of Laser Powder Bed Fused Inconel 718 Parts
View
PDF
for content titled, Characterization of the Role of Post-Build Heat Treatment on the Localized Corrosion Susceptibility of Laser Powder Bed Fused Inconel 718 Parts
As more industries look toward additively manufactured (AM) components to combat lead times, re-design, cost of complexity, etc., those industries are faced with re-evaluating the performance of AM-based materials as compared to their well-documented wrought or machined counterparts. A particular alloy of interest to many industries including aerospace and energy/power generation is Inconel 718 due to its resistance to oxidation and high temperature degradation [1]. Additively manufactured Inconel 718 parts typically receive a series of post-build heat treatments prior to deployment. If not properly controlled, these post-build treatments may introduce secondary precipitates and other inhomogeneities that will affect the parts’ mechanical properties and susceptibility to corrosion. This is specifically true of susceptibility to localized corrosion mechanisms that may lead to crack initiation, accelerated crack growth and ultimately premature failure. By utilizing electrochemical parameter testing to analyze for localized breakdown potentials, this work investigates the variation in tolerance to localized corrosion that results from common post-build heat treatment steps and the secondary phase precipitation that can ensue in Inconel 718 AM parts.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 23-29, September 14–16, 2021,
Abstract
View Papertitled, Optimization of the Post Heat Treatment of Additively Manufactured IN718
View
PDF
for content titled, Optimization of the Post Heat Treatment of Additively Manufactured IN718
IN718 has good fabricability, high strength at elevated temperature, and corrosion resistance, and it is widely deployed in many aerospace and other high-performance applications. With the molten pool rapid solidification during laser powder bed fusion (L-PBF), the resulting microstructure is anisotropic and inhibits macro-segregation. The as-built condition usually exhibits lower mechanical properties. Four different heat treatment procedures were designed and tested to study the effect of different heat treatment parameters on the type of precipitates and grain size. The investigated heat treatment procedures showed the formation of equiaxed grain size and a significant amount of γ' and γ" particles at the grain boundary in addition to primary carbide types (MC). Three types of microstructure characteristics and grain size were achieved. Coarse grain size suitable for creep application was achieved by increasing the soaking time at the aging cycle. The formation of serrated grain boundaries suitable for good fatigue and creep properties was achieved by decreasing the stress relief cycle's soaking time and temperature. Fine-grain size, which is preferable for fatigue properties, was achieved by decreasing the soaking time at the solution annealing cycle.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 30-36, September 14–16, 2021,
Abstract
View Papertitled, On the Benefits of High-Pressure Heat Treatment Additively Manufactured CoCr
View
PDF
for content titled, On the Benefits of High-Pressure Heat Treatment Additively Manufactured CoCr
Laser Powder Bed Fusion (L-PBF) processes are becoming more viable in place of traditional castings in a variety of industries. To compete, novel material grades are being considered with additive manufacturing (AM). In maximizing performance and manufacturing efficiency through AM, a novel approach to heat treatment and Hot Isostatic Pressing (HIP) processing needs to be considered. It has been shown that combining key heat treatment processes with (HIP) by utilizing fast cooling rates can benefit static properties as well as improve turn-around time for HIP processing [1,2]. Argon pressures up to 207 MPa with cooling rates above 170°C per minute are now available in production sized HIP systems to design ideal HIP cycles for high pressure heat treatment. Additive manufacturing with high pressure heat treatment is in need of further investigation for establishing new qualification standards. This study investigates designed High-Pressure Heat Treatment cycles to consider mechanical performance on LPBF CoCr. The combined cycles investigate possible alternatives to historically accepted two step HIP then heat treat processing by combining densification with homogenization treatment into one step. Tensile, fatigue, hardness, microstructure and Charpy impact performance are explored to seek optimal properties and with streamlined thermal processing. It was found that all trial conditions exceeded Electron Beam Melted (EBM) AM CoCr expectation, but traditional processing provided a slight advantage in ultimate tensile stress. One of the novel processes explored, “common” was found to provide a slight improvement on yield stress and direct hardness. Published fatigue data is rare for CoCr, however data generated from this study showed a slight advantage to the “common” HPHT process primarily for lower applied stress levels. Microstructures were comparable across all trial processes. It is recommended that each novel processing route be considered as viable alternatives to traditional processing, but that the “common” processing may prove advantageous for both mechanical properties and streamlined manufacturing.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 44-50, September 14–16, 2021,
Abstract
View Papertitled, High Pressure Heat Treatment for L-PBF Hastelloy X
View
PDF
for content titled, High Pressure Heat Treatment for L-PBF Hastelloy X
Hastelloy X is used in turbomachinery and petrochemical applications as it is designed for excellent oxidation and stress corrosion cracking resistance, strength, and stress rupture behavior. This alloy is now being printed via powder bed fusion processes as many industries have developed interests in the benefits additive manufacturing (AM) offers. However as-printed Hastelloy X suffers from material defect formation such as hot cracking. Hot isostatic pressing (HIP) is often applied to improve performance and reliability. Although the conventional HIP process has been shown to eliminate defects, the equipment is unable to cool at desired rates allowing the formation of excessive carbide precipitation, negatively influencing corrosion resistance and toughness. In turn the product is solution treated at a similar temperature while applying rapid gas cooling for performance requirements. With use of uniform rapid cooling available in modern HIP equipment, a high-pressure heat treatment can be applied offering the ability to perform both HIP and heat treatment in one piece of equipment. Microstructure and tensile properties are evaluated and compared to the conventional processing routes. The results demonstrate that the novel high pressure heat treatment approach offers a processing route that is equivalent to or better than conventional methods.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 238-243, September 14–16, 2021,
Abstract
View Papertitled, Mechanical Design, Additive Manufacturing, and Performance of Equal Volume Metamaterials
View
PDF
for content titled, Mechanical Design, Additive Manufacturing, and Performance of Equal Volume Metamaterials
In this paper, we study the energy absorption of metamaterials composed of unit cells whose special geometry makes the cross-sectional area and the volume of the bodies generated from them constant (for the same enclosing box dimensions). After a parametric description of such special geometries, we analyzed by finite element analysis the deformation of the metamaterials we have designed during compression. We 3D printed the designed metamaterials from plastic to subject them to real compression. The results of the finite element analysis were compared with the real compaction results. Then, for each test specimen, we plotted its compaction curve. By fitting a polynomial to the compaction curves and integrating it (area under the curve), the energy absorption of the samples can be obtained. As a result of these investigations, we drew a conclusion about the relationship between energy absorption and cell number.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 4-11, October 24–26, 2017,
Abstract
View Papertitled, Heat Treatment of IN 718 Produced by Laser Powder Bed Fusion Process—Effect of Thickness on the Microstructure Characteristics
View
PDF
for content titled, Heat Treatment of IN 718 Produced by Laser Powder Bed Fusion Process—Effect of Thickness on the Microstructure Characteristics
Laser powder bed fusion (L-PBF) is an additive manufacturing (AM) technique through which net shape/near-net components are built by selectively melting powder, one layer at a time, with a focused laser beam. The as-built microstructures have a great impact on the phase transformation and precipitation behavior during subsequent heat treatment. This study was directed to understand the effect of component thickness, in the case of complex shape components, on the microstructure, type of precipitates of L-PBF IN 718 in as-built and heat-treated conditions. Standard heat treatment cycles per ASTM F3055 and AMS 2774D were investigated. This work shows that microstructure, grain size, types of precipitates, and formed phases of components produced by L-PBF in the as-built condition and after heat treatment are profoundly different with different component thicknesses. In order to obtain the optimal microstructure and mechanical properties, specific heat treatments are necessary due to the complexity of the components produced.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 236-241, October 24–26, 2017,
Abstract
View Papertitled, Inductors and Coils New Production Solutions using Additive Manufacturing such as EBM 3D Printing and Precision Casting—A Presentation of the Current State-of-the-Art Technologies
View
PDF
for content titled, Inductors and Coils New Production Solutions using Additive Manufacturing such as EBM 3D Printing and Precision Casting—A Presentation of the Current State-of-the-Art Technologies
In induction heating process, coils and inductors are the core of the heating process. They are the end tool where the magnetic process affecting the part or material to be heated occurs. For more than a century, the dominant manufacturing process has been based, mainly, upon joining technologies where the coppersmith skill has been the safeguard of the quality. Use of fixtures, mandrels, and machined parts have improved the repeatability and quality of the produced elements but high volume, dimensional repeatability has always been source of problems. GH Induction continuously works on the improvement of such relatively artisanal methods to allow better lifetime, minimized production time and overall better quality. Following a first development work bringing a patented innovation in 2011 using a precision casting solution (Microfusion – Wax casting), with a solution provided a single piece coil, GH Induction has, after 2 years of development, patented a new additive manufacturing solution (3D printing concept) based on the use of Electron Beam Melting (EBM). The EBM solution benefits from the latest technology in additive manufacturing, both technologies present tremendous advantages for the designer and user. Complex shape, very small inductors can be manufactured, which are impossible to do with standard method. This presentation and article summarized the concept, manufacturing principle and technical benefits that the final users can have using such innovative solutions.