Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Copper-nickel alloys
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 179-182, September 30–October 3, 2024,
Abstract
View Paper
PDF
Ductility dip cracking (DDC) is a detrimental solid-state cracking phenomenon that can occur during welding of copper-nickel (Cu-Ni) alloys used in naval vessels. The presence of these cracks has several deleterious effects, including reduced fatigue life and increased susceptibility to corrosion. The mechanism of DDC remains highly debated and understudied, especially in material systems outside of Ni-Cr-Fe alloys. The predominant mechanisms that have been proposed include: 1. Grain boundary sliding, 2. Precipitate-induced strain, and 3. Impurity element segregation. In the present body of research, thermal-mechanical testing over a wide range of strain rates and temperatures was performed using a Gleeble 3500. Both flow-stress and fracture morphology of wrought 70/30 Cu- Ni are considered. Following fracture, microstructural analyses using both scanning electron microscopy and optical microscopy were conducted to observe and quantify intergranular cracking and fracture surface features. Results show a strong correlation among fracture morphology, ductility, and temperature.
Proceedings Papers
Fábio Edson Mariani, Gustavo Satoru Takeya, Luiz Carlos Casteletti, Amadeu Lombardi Neto, George Edward Totten
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 686-691, October 20–22, 2015,
Abstract
View Paper
PDF
Ductile cast iron can be heat-treated to obtain a significant property improvement austempering, resulting in Austempered Ductile Iron (ADI). Performance can be further improved by using boronized surface layers which are capable of reaching high hardnesses (2100 HV). In this work, samples of nodular cast iron alloyed with copper, copper-nickel and copper-nickel molybdenum were borided in a salt bath (borax + aluminum) at temperatures 850, 900 and 950 °C for 2 and 4 hours. After these treatments, the samples were directly austempered from the boriding temperature in salt baths at temperatures of 240, 300 and 360°C (boroaustempering) which avoided the need for a subsequent reheating for such processing. The boriding treatment produced uniform layers with thicknesses in the range 35-130 micrometers and hardness in the range from 1300 to 1700 HV.
Proceedings Papers
Fábio Edson Mariani, Galtiere Correa Rego, Luiz Carlos Casteletti, Amadeu Lombardi Neto, George Edward Totten
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 696-701, October 20–22, 2015,
Abstract
View Paper
PDF
Boriding thermochemical treatment produces layers with high hardness which improves the tribological performance of ductile cast iron while the austempering treatment improves the mechanical performance of the substrate. In this work, samples of the ductile cast iron alloyed with copper, copper-nickel and copper-nickel-molybdenum were borided in a salt bath (borax + aluminum) at temperatures of 850, 900 and 950°C during 2 and 4 hours. The data for the layers obtained were used to determine the diffusion coefficients and activation energies of this process. The results of the calculated diffusion coefficients were similar to those obtained by the direct measurements of the layer thicknesses. For the sample alloyed with Cu or Cu-Ni the activation energy obtained was 141.27 kJ/mol, and for the sample alloyed with Cu-Ni-Mo the value was 212.98 kJ/mol. The statistical parameters and the correlation coefficients (R) showed satisfactory agreement.