Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Polymer quenchants
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 201-207, September 30–October 3, 2024,
Abstract
View Papertitled, Cooling Curve Analysis of a PAG Polymer Quenchant Using Two Spray Quench Rings Designs
View
PDF
for content titled, Cooling Curve Analysis of a PAG Polymer Quenchant Using Two Spray Quench Rings Designs
The analysis of cooling curves obtained by immersing a probe in the quench medium has been widely used since its availability. For instance, methods described in standards such as ISO 9950 and ASTM D 6482 refer to the use of an Inconel 600 specimen which is quenched to obtain the cooling curve of a given fluid; however, spray quenching is being mostly used in induction hardening processes. In this work, the quenching characteristics of a PAG polymer at 6 and 12 % concentration were determined and compared with water as a baseline. The fluid was heated at 30 °C, while the solution flow rate was set at 90 L/min; two different quenching rings were designed and used in a laboratory-scale setting. Also, the fluid flow in the quench rings was simulated through Computational Fluid Dynamics (CFD), to obtain flow patterns inside the quenching devices. From the results obtained, the cooling rate curves showed no vapor phase, and the maximum cooling rate was found to be higher in one of the quench ring designs. The design of the quench ring device has a significant influence on the quenching characteristics of the quenchant, mainly at medium and low temperatures of the cooling rate curve.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 389-393, October 24–26, 2017,
Abstract
View Papertitled, The Effect of Contamination on Cooling Curve Behavior of Polymer Quenchants
View
PDF
for content titled, The Effect of Contamination on Cooling Curve Behavior of Polymer Quenchants
In induction hardening, contamination is a common occurrence. Many parts are processed per hour, with each part carrying a small amount of contaminant. The contaminant could be cleaners, coolants, or machine swarf. Contamination is compounded by the fact that many induction systems have a very small quench tank – often 100-200 gallons. The common question is, at what point does contamination affect the cooling curve or heat extraction behavior of the quenchant? The purpose of this paper is to examine common contaminants and their effects on cooling curve behavior.