Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-6 of 6
Powder metal products
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 97-106, September 30–October 3, 2024,
Abstract
View Paper
PDF
High-entropy alloys (HEA) are multinary alloys obtained by blending at least five metallic elements in compositions close to their isoatomic fractions (5–35 at%). Generally, HEAs are produced by arc melting and casting. However, the cast specimens undergo phase separation and have a non-uniform microstructure. In contrast to ingot metallurgy, powder metallurgy has several advantages such as the possibility of alloying metals with high melting points and large differences in melting points and specific gravity. Therefore, we investigated the preparation of HEAs by mechanical alloying (MA), which produces an alloy powder with a uniform microstructure, followed by consolidation by spark plasma sintering (SPS). In this study, CoCrFeNiTi HEA sintered after MA-SPS was subjected to direct current plasma nitriding with screen (S-DCPN) to evaluate the characteristics of the nitrided layer as a function of nitriding temperature. Ball milling with heptane in an argon atmosphere using pure powders of Co, Cr, Fe, Ni, and Ti as raw materials was performed for 50 h. Subsequently, sintered compacts were prepared by SPS and treated with S-DCPN at 673, 773, and 873 K for 15 h in 75% N 2 –25% H 2 at a gas pressure of 200 Pa. A screen made of austenitic stainless steel SUS316L was installed as an auxiliary cathode to ensure uniform heating and nitrogen supply during the plasma nitridation process. Then, X-ray diffraction test, cross-sectional microstructure observation, surface microstructure observation, cross-sectional hardness test, roughness test, glow discharge optical emission spectrometry, corrosion test, and wear test were performed on the nitrided samples. The corrosion test results demonstrated that corrosion resistance increased with decreasing nitriding temperature. Furthermore, the results of the roughness and wear tests confirmed that abrasive wear occurred on the specimens nitrided at 873 K.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 173-178, September 30–October 3, 2024,
Abstract
View Paper
PDF
Mold repair is a viable strategy for saving energy and reducing CO 2 emissions. Papers in the literature show that repairing a limited damaged area of the mold instead of producing a new one is becoming increasingly attractive, especially considering the latest European and international regulations introduced with the green deal. In this paper, the authors are pleased to present some preliminary results related to the repair of AISI H13 tool steel molds by Laser-Directed Energy Deposition. Steel blocks (20 x 55 x 100 mm3), previously tempered at 435±10 HV, were machined to reproduce the material removal of the damaged part of the mold. Subsequently, the region was repaired by L-DED using commercial H13 powder. The process parameters were optimized to obtain a defect-free welded area. Since the microstructure of the deposited tool steel consists of hard (730±10 HV) and brittle (7 J Charpy impact toughness) martensite, a series of post-process heat treatments were performed at different temperatures to restore a hardness compatible with that of the base steel. However, this goal was only partially achieved due to the different tempering behavior of L-DED-deposited and bulk H13 steel. In particular, the tempering temperature had to be limited to avoid softening of the base steel. In the best case, double tempering at 620 °C resulted in a toughness recovery of up to 42 J. Thermal fatigue tests showed better resistance to crack propagation after tempering, as evidenced by the shallower penetration depth compared to the as-built material.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 251-256, September 30–October 3, 2024,
Abstract
View Paper
PDF
This study investigates the heat treatment response and microstructure evolution of high-carbon steels for additive manufacturing. Moreover, the role of nitrogen as an interstitial alloying element is addressed. Stainless steel 440C, cold-work D2, hot-work H13, and T15 high-speed tool steel overspray powders from spray forming were investigated. The thermal behavior of these materials was examined using a thermal analyzer that combines calorimetry and thermogravimetry. Additionally, interstitial alloying with nitrogen was performed in-situ to understand its influence on thermal behavior. The (near-)equilibrium nitrogen solubility in 440C and D2 in contact with flowing N 2 gas was recorded as a function of temperature through the interval 1200 to 800 °C. The microstructure of the steel powders was characterized by light optical microscopy and X-ray diffraction. The potential of nitrogen alloying and the importance of optimized heat treatment protocols are emphasized with respect to high-carbon steels in additive manufacturing applications.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 18-25, October 15–17, 2019,
Abstract
View Paper
PDF
In-envelope hybrid manufacturing systems comprised of directed energy deposition (DED) and machining provide flexibility for the fabrication of complex geometries with minimal setup changes. However, for these manufacturing set ups, the effects of deposition parameters such as laser power and scanning speed on the quality of the build remain relatively unexplored. An important aspect for developing components with reliable mechanical properties is a thorough understanding of DED thermodynamics during fabrication. Therefore, DED thermodynamics were defined based on the strengthening properties derived from the thermal gradient (G) and solidification rate (R) of the melt pool. Other factors influencing DED thermodynamics include substrate geometry and surface finish which are expected to affect cooling rates and adhesion, respectively. In this work, stainless steel 316L specimens were fabricated varying laser power intensity, scanning speed, and deposition substrate. The effect of these parameters on the microstructure of the sample components were analyzed. Microstructural evolution at various points within and between layers was studied and correlated to localized hardness. An increase in mechanical properties for fine, equiaxed grains demonstrates the Hall-Petch principle for strengthening of components.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 63-69, October 15–17, 2019,
Abstract
View Paper
PDF
Inductive welding systems used to make metal tubes often incorporate a ferrite impeder to limit induced electrical current on the ID of the tube under the induction coil. This paper assesses the improvement that can be achieved through the use of soft magnetic composites, instead of ferrite, and the addition of an external magnetic controller or bridge. The authors explain how they simulated the potential impact of the two design modifications and experimentally verified the results.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 541-544, October 24–26, 2017,
Abstract
View Paper
PDF
Transmission-manufacturers constantly need to adapt their products and manufacturing technologies to meet future’s market and legislation requirements such as cost-efficiency, running-smoothness and drivetrain-agility. Components made of powder metal (“PM-components”) are established in today’s transmission industry as a cost efficient alternative even for high strength and high precision powertrain applications. The PM-material and the applied heat treatment processes have made significant improvements in recent years. One major step in the development was to combine the freedom in alloying-concepts of the PM-technology with the advantages of the Low Pressure Carburizing (LPC) heat treatment process. PM-components must be case-hardened to meet design-intent regarding wear resistance and strength. But when case hardening PM-components using a conventional atmospheric carburizing process, this can lead to serious overcarburizing and even massive carbide-formation. Another major challenge when using the conventional process is to clean PM-parts after the traditional oil-quenching process. Therefore, the process of Low Pressure Carburizing (LPC) combined with High Pressure Gas Quenching (HPGQ) was adapted to the special needs of serial production of PM-components. This heat treatment process offers significant benefits, such as: - no overcarburizing and excessive carbide-formation due to precise diffusion of carbon into the components - reproducible microstructures from part to part and from load to load - clean and shiny parts after quenching - superior control of distortion, - no intergranular oxidation, - better fatigue resistance and - the benefits of an environmentally friendly process. Over the past 25 years, Stackpole and ALD worked on powder metal technology and advanced heat treatment processes. Material, process and equipment have seen significant improvements over the last decades to offer true benefits. This presentation will give an insight into benefits and challenges of PM-components heat treated in low pressure with subsequent gas quenching. The paper refers to the industrial series production of components and it refers to R&D - case studies as well.