Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
High-speed tool steel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 251-256, September 30–October 3, 2024,
Abstract
View Paper
PDF
This study investigates the heat treatment response and microstructure evolution of high-carbon steels for additive manufacturing. Moreover, the role of nitrogen as an interstitial alloying element is addressed. Stainless steel 440C, cold-work D2, hot-work H13, and T15 high-speed tool steel overspray powders from spray forming were investigated. The thermal behavior of these materials was examined using a thermal analyzer that combines calorimetry and thermogravimetry. Additionally, interstitial alloying with nitrogen was performed in-situ to understand its influence on thermal behavior. The (near-)equilibrium nitrogen solubility in 440C and D2 in contact with flowing N 2 gas was recorded as a function of temperature through the interval 1200 to 800 °C. The microstructure of the steel powders was characterized by light optical microscopy and X-ray diffraction. The potential of nitrogen alloying and the importance of optimized heat treatment protocols are emphasized with respect to high-carbon steels in additive manufacturing applications.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 312-315, September 30–October 3, 2024,
Abstract
View Paper
PDF
Additive manufacturing is increasingly used in a variety of applications. Directed Energy Deposition (DED) technology using powder feedstock enables the production of materials in combinations that would be very problematic using conventional technologies. DED is a technological process where the fed material is melted directly at the desired location using a laser beam. The research described here deals with the additive manufacturing and subsequent induction heat treatment of a functional deposited layer of M2 high-speed steel. Induction treatment has the advantage that only the functional layer of the component can be heat treated without affecting the base material. It is therefore possible to heat treat a combination of completely different materials with different properties without degrading the base material. Hardness values reached 950 HV (68 HRC) both after additive manufacturing and after additive manufacturing and induction treatment. Induction heat treatment of the deposited M2 layer ensured removal of traces of the original melt pools produced by the additive manufacturing. Investigation of the microstructure and mechanical properties of M2 tool steel after induction heat treatment produced by DED highlights its potential for high performance tooling and machining applications. The main objective of this research is to improve the final properties and tool life of forming tools when the tool is made of less expensive low-alloy steel and its functional layer is made of M2 high speed steel using additive manufacturing technology.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 7-16, September 14–16, 2021,
Abstract
View Paper
PDF
Selective laser melting (SLM) is an additive manufacturing technique that can be used to make the near-net-shape metal parts. M2 is a high-speed steel widely used in cutting tools, which is due to its high hardness of this steel. Conventionally, the hardening heat treatment process, including quenching and tempering, is conducted to achieve the high hardness for M2 wrought parts. It was debated if the hardening is needed for additively manufactured M2 parts. In the present work, the M2 steel part is fabricated by SLM. It is found that the hardness of as-fabricated M2 SLM parts is much lower than the hardened M2 wrought parts. The characterization was conducted including X-ray diffraction (XRD), optical microscopy, Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to investigate the microstructure evolution of as-fabricated, quenched, and tempered M2 SLM part. The M2 wrought part was heat-treated simultaneously with the SLM part for comparison. It was found the hardness of M2 SLM part after heat treatment is increased and comparable to the wrought part. Both quenched and tempered M2 SLM and wrought parts have the same microstructure, while the size of the carbides in the wrought part is larger than that in the SLM part.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 146-153, October 20–22, 2015,
Abstract
View Paper
PDF
M-42 is Molybdenum-series high speed steel used as a cutting tool material because of its hot hardness and toughness properties. With the better hot hardness and wear resistance, M-42 is one of the most widely used tool materials for cutting tools. These Molybdenum steels are heat treated conventionally in four steps viz., preheating, austenitizing, quenching along with two stages of tempering. The main step in heat treatment, austenitizing is done with the aid of salt bath furnace by heating the tool steel to the austenitizing temperature (1260°C) with three stages of preheating. This method is often a time consuming process with most of the time and energy utilized for the achievement of the required temperature. This study deals with the rapid heat treatment of the aforementioned M-42 steel samples by the action of microwaves from a hybrid microwave furnace. The quenching is done as of in a conventional method using a neutral salt bath maintained at a temperature of 550 °C. Comparison between the rapidly heat treated specimen and the conventionally heat treated specimen With similar dimensions is carried out. The tempering processes for both the specimens were carried out conventionally. Mechanical properties such as hardness, microstructure, etc., are compared between the conventional and the rapid heat treated specimens. Scanning electron microscopy was also taken to study the grain refinement of the microwave heat treated steel specimen at a higher magnification. The comparison between the properties and the microstructure revealed minute changes in mechanical properties of the rapid heat treated specimen and also resulted in the marked drop of the heating time and the energy saving thereby reducing the costs incurred for the heat treatment process.