Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-7 of 7
Chromium-molybdenum steel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 117-124, September 14–16, 2021,
Abstract
View Paper
PDF
Nitriding surface hardening is commonly used on steel components for high wear, fatigue and corrosion applications. Case hardening results from white layer formation and coherent alloy nitride precipitates in the diffusion zone. This paper evaluates the microstructure development in the nitrided case and its effects on the hardness in both the white layer and the substrate for two industry nitriding materials, Nitralloy 135M and AISI 4140. Computational thermodynamic calculations were used to identify the type and amount of stable alloy nitrides precipitation and helped explain the differences in the white layer hardness, degree of porosity at the surface, and the hardening effect within the substrate. Some initial insights toward designing nitriding alloys are shown.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 76-78, September 14–16, 2021,
Abstract
View Paper
PDF
The work presented in this paper addresses a data gap that continues to be a hinderance to users of precipitation modeling tools, particularly those based on Langer-Schwartz theory. Thermodynamic and kinetic data required for precipitation models can be obtained from CALPHAD databases, but interfacial energies between the bulk and precipitate phases are not available for many alloy systems. In this work, a number of matrix-precipitate interfacial energies have been determined for influential precipitates in alloys of industrial importance, for example, carbides in Grade 22 low-alloy steels, delta phase in Ni 625 and 718, S-phase in Al 2024, and Q’ and β’’ in Al 6111.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 50-55, October 15–17, 2019,
Abstract
View Paper
PDF
Large slewing bearings are employed in wind turbines and other energy industry applications where they are subjected to harsh working conditions. In order to bear heavy dynamic loads, slewing ring tracks can be surface hardened by induction heating with a seamless process which allows for a uniform heat treatment without soft zones. In comparison with the traditional furnace carburizing, seamless induction hardening is faster, consumes less energy, and has been developed to achieve the same results utilizing medium carbon steel. The presence of a pre-heating coil, with an independent power source, allows for the adjustment of the heat input rate in order to tune the heating process according to the steel characteristics. The pre-heating operation allows for case depths up to 10 mm to be reached without a reduction in scanning speed or productivity. A mechanical tracking system adjusts the coils to compensate for ring deformation and thus assure a uniform heating pattern. Surface hardness tests and metallography have been performed in different process stages to verify the process consistency. A fine grain microstructure in the end zone has been obtained thanks to the pre-heating coil, which avoids surface overheating.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 115-122, October 15–17, 2019,
Abstract
View Paper
PDF
Vacuum carburizing with high pressure gas quenching is increasingly employed to reduce near-surface intergranular oxidation and quenching distortion. It has also been shown to reduce processing times because it can be conducted at higher temperatures, up to 1100 °C. These temperatures, however, may cause austenite grain coarsening, making steel more susceptible to fatigue failure. This paper presents a study showing how microalloying carburizing steels with Mo and Nb improves resistance to austenite grain growth. The control of grain size is attributed to solute and precipitation effects.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 160-165, October 15–17, 2019,
Abstract
View Paper
PDF
This paper reviews recent advances in the control of plasma ion nitriding processes and their effect on AR500 and 4140 steel and ductile and gray iron. The advanced discussed are primarily in the area of electrical power and gas flow control.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 368-372, October 20–22, 2015,
Abstract
View Paper
PDF
Grain growth during heat treatment can affect mechanical properties. A large grain size can result in a lower strength and susceptibility to brittle failure. In order to control the prior austenite grain size, the effect of Austenitizing temperatures and holding times on the grain size and hardness in 4140 steel was experimentally investigated. Samples were heat treated at 900, 1000, and 1100 °C, and held for 1, 4, and 9 hours. After austenitizing, samples were cooled in the furnace to 850 °C before they were quenched in water at room temperature. Each sample was cut, mounted, and polished. Rockwell hardness and microhardness tests were performed on each sample. A Picric etch was used for grain size analysis. The grain size was measured following the E112 standard test method. It was found that the prior austenite grain size increased with temperature and time according to the standard grain growth model. It was also found that the as-quenched hardness decreased with an increase in grain size.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 490-494, October 20–22, 2015,
Abstract
View Paper
PDF
Gas quench, with advantages such as reducing distortion and residual stress, is developing rapidly with the intent to replace liquid quench. Medium and high hardenability steels are needed for gas quench, since the quenching power is lower compared to liquid quench 1 . The traditional Jominy end quench test and Grossmann test, designed for liquid quench steel hardenability, didn’t properly determine the hardenability of high alloyed steels. In order to determine gas quench steel hardenability, a new test is required. In this paper, a critical heat transfer coefficient (HTC) test based on the Grossmann test is proposed. Critical HTC, a concept like critical diameter, was successfully proved to describe the gas quench hardenability of steel. The critical HTC of AISI 4140 steel is 430 W/m 2 C and the critical HTC of AISI 52100 steel is 820 W/m 2 C, which reveals that the gas quench hardenability of 4140 is better than 52100. In the paper, the critical HTC test requirements are presented and discussed.