Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Three-point bend testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 220-226, September 30–October 3, 2024,
Abstract
View Papertitled, Microstructural Development and Fracture Behavior after Rapid Tempering in the Tempered Martensite Embrittlement Regime of 1045 Steel
View
PDF
for content titled, Microstructural Development and Fracture Behavior after Rapid Tempering in the Tempered Martensite Embrittlement Regime of 1045 Steel
Quenching and tempering (Q&T) allows a wide range of strength and toughness combinations to be produced in martensitic steels. Tempering is generally done to increase toughness, although embrittling mechanisms result in temperature ranges where strength and toughness may decrease simultaneously. Tempered martensite embrittlement (TME) represents one such mechanism, associated with the decomposition of retained austenite and precipitation of cementite during tempering, usually between 250 and 450 °C. The use of induction heating allows for time-temperature combinations, previously unobtainable by conventional methods, that have been shown to improve properties. The present work shows a beneficial effect of rapid tempering in alloy 1045, with an increase in energy absorption of about 50% when measured at room temperature via a three-point bending fracture test in the TME regime. Phase fraction measurements by Mössbauer spectroscopy showed that increased energy absorption was obtained despite essentially complete decomposition of retained austenite during tempering. Scanning electron microscopy (SEM) investigation of the carbide distribution showed refinement of the average carbide size of approximately 15% in the rapid tempered conditions. SEM characterization of the fracture surfaces of the rapid tempered three-point bend samples showed that, despite an increase in energy absorption in the TME regime, increased microscopic ductile fracture appearance was observed only at the highest test temperature.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 180-186, September 14–16, 2021,
Abstract
View Papertitled, New Generation Press Hardening Steels with Tensile Strength of 1.7-2.0 GPa and Enhanced Bendability
View
PDF
for content titled, New Generation Press Hardening Steels with Tensile Strength of 1.7-2.0 GPa and Enhanced Bendability
Press hardening steel (PHS) applications predominately use 22MnB5 AlSi coated in the automotive industry. This material has a limited supply chain. Increasing the tensile strength and bendability of the PHS material will enable light-weighting while maintaining crash protection. In this paper, a novel PHS is introduced, and properties are compared to 22MnB5. The new Coating Free PHS (CFPHS) steel, 25MnCr, has increased carbon, with chromium and silicon additions for oxidation resistance. Its ultimate tensile strength (UTS) of 1.7 GPa with bending angle above 55° at 1.4 mm thickness improves upon the 22MnB5 grade. This steel is not pre-coated, is oxidation resistant at high temperature, thus eliminating the need for AlSi or shot blasting post processing to maintain surface quality. Microstructural mechanisms used to enhance bendability and energy absorption are discussed for the novel steel. Performance evaluations such as: weldability, component level crush and intrusion testing and e-coat adhesion, are conducted on samples from industrial coils.