Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-13 of 13
Dimensional distortion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 81-87, September 14–16, 2021,
Abstract
View Paper
PDF
As consumers embrace Electric Vehicle (EV) technology, the automotive industry is moving quickly into replacing internal combustion engines (ICE) and traditional transmissions. The change to electrically driven vehicles offers new challenges to the gear manufacturing world, and most importantly new specifications to heat treat these gears - specifically quieter gear sets and higher torque ratings. Today’s EVs have a much lower tolerance for noise from the gear set to power the vehicle; therefore, this continues the need for even quieter and stronger gears. This technical presentation will illustrate the heat treat and distortion specifications for these new gears, along with answering the “why” of selecting low pressure vacuum carburizing (LPC) for new programs around the world.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 263-270, September 14–16, 2021,
Abstract
View Paper
PDF
A gas quenching method was developed by DANTE Solutions, in conjunction with the U.S. Army Combat Capabilities Development Command Aviation & Missile Center (DEVCOM AvMC), to control distortion in difficult to quench geometries. This new method addresses the nonuniform cooling inherent in most gas quenching processes. A prototype unit was constructed and tested with the aim of controlling the martensite formation rate uniformity in the component being quenched. With the ability of the DANTE Controlled Gas Quenching (DCGQ) unit to control the temperature of the quench gas entering the quench chamber, thermal and phase transformation gradients are significantly reduced. This reduction in gradients yields a more uniform phase transformation, resulting in reduced and predictable distortion. Being able to minimize and predict distortion during gas quenching, post heat treatment finishing operations can be reduced or eliminated, and as such, fatigue performance can be improved. This paper will discuss the prototype unit performance. Mechanical testing and metallographic analysis were also performed on Ferrium C64 alloy steel coupons and will be discussed. The results obtained showed that the slower cooling rate provided by the prototype did not alter the microstructure, hardness, strength, ductility, toughness, or residual stress of the alloy.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 309-314, September 14–16, 2021,
Abstract
View Paper
PDF
AISI 8620 low carbon steel is widely used due to its relatively low cost and excellent case hardening properties. The nominal chemistry of AISI 8620 can have a large range, affecting the phase transformation timing and final hardness of a carburized case. Different vendors and different heats of steel can have different chemistries under the same AISI 8620 range which will change the result of a well-established heat treatment process. Modeling the effects of alloy element variation can save countless hours and scrap costs while providing assurance that mechanical requirements are met. The DANTE model was validated using data from a previous publication and was used to study the effect of chemistry variations on hardness and phase transformation timing. Finally, a model of high and low chemistries was executed to observe the changes in hardness, retained austenite and residual stress caused by alloy variation within the validated heat treatment process.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 315-320, September 14–16, 2021,
Abstract
View Paper
PDF
Excessive distortion was observed in many small components made from 1080 steel that was neutral hardened following stamping. A study was then undertaken to determine how to reduce the distortion of the heat-treated parts while maintaining proper hardness and microstructure. A numerical simulation based on Simheat software was conducted to determine the effect of elevated temperature on the quenching oil used and its impact on distortion and microstructure. A second oil designed to operate at higher temperatures was also examined. Using Simheat software, the two oils were compared based on predicted distortion, hardness, and microstructure and the results were subsequently validated using empirical methods. It was concluded that a significant improvement in distortion could be achieved by using a different oil and higher quench temperatures.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 30-32, September 14–16, 2021,
Abstract
View Paper
PDF
This paper provides an overview of salt quench hardening and how it compares with oil quenching. It explains how salt quenching promotes hardenability, ductility, and strength as well as distortion control, heat extraction, and process reduction. It discusses equipment layout configurations, NFPA guidelines and safety practices, and salt quench processes for austempering, marquenching, and neutral hardening applications.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 4-8, September 14–16, 2021,
Abstract
View Paper
PDF
Low pressure carburizing (LPC) in combination with high-pressure gas quenching (HPGQ) is a robust and versatile case hardening technology. This paper shows how recent advancements in LPC and HPGQ are being employed in the heat treatment of automotive and aerospace components. Significant progress has been made in areas such as fixturing, load densities, cycle times, distortion control, automation, traceability, and the integration of heat treatment into manufacturing lines. Practical applications are shown for both multiple- and single-layer treatment.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 62-65, September 14–16, 2021,
Abstract
View Paper
PDF
This paper discusses the growing use of automation in heat treating and some of the benefits that have been realized in early applications. It provides examples showing how articulated robots are used to load and unload parts on fixtures, how inline 3D cameras facilitate dimensional and distortion control, and how test coupons placed by robots at strategic locations throughout a load are weighed before and after heat treatment to determine if parts in different areas of the load are likely to be carburized to the same degree. It also includes an example of an automatically generated report and explains how binary codes on base trays can be used to automatically upload recipes for specific heat treatments.
Proceedings Papers
Julianne E. Jonsson, Michael R. Hill, Christopher R. Chighizola, Christopher R. D’Elia, Barbara S. Linke ...
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 96-99, September 14–16, 2021,
Abstract
View Paper
PDF
Undesired distortion can arise during machining of metals from two main mechanisms: 1) release of bulk residual stress in the pre-form, and 2) deformation induced by the cutting tool. The interaction between these two mechanisms is explored herein using aluminum plate-shaped samples that have a large surface with variations of bulk residual stress (BRS), where that surface is subsequently milled and we observe milling-induced residual stress (MIRS) and distortion. Plate samples are cut from two kinds of large blocks, one kind stress-relieved by stretching and a second kind that had been solution heat treated, quenched, and aged. MIRS is measured following milling using hole-drilling with fine depth increments. Distortions of thin wafers cut at the milled surfaces are used to show how the interactions between BRS and MIRS change milling-induced distortion. Data from the study show that the directions of MIRS and distortion relative to the milling direction are changed when milling in samples with high BRS magnitude (roughly ±100 MPa), with the direction of maximum curvature rotating toward or away from the milling direction depending on the sign and direction of BRS. High magnitude BRS increased distortion, nearly doubling the amount found compared to milling in samples free of BRS.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 214-220, October 15–17, 2019,
Abstract
View Paper
PDF
This paper examines the causes of distortion in heat treated 1080 steel parts and the influence of quenchants and quenching temperature. A comparison of parts produced using a different oil and different quench temperatures shows that a significant improvement can be achieved in distortion with only minor grain growth and a slight reduction in hardness.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 221-227, October 15–17, 2019,
Abstract
View Paper
PDF
A number of modifications were made to a batch quenching process for pinion gears to reduce the amount of size change in the ID. This paper assesses the impact of adding vertical plates to the load elevator to better condition oil flow to the stacked part baskets. Data collected from pinion gears before and after the modification show a reduction in the average and range of ID bore change, indicating an improvement in quench uniformity. CFD analyses suggest that improvement is due to a significant reduction in turbulence, resulting from the addition of the vertical plates. As the authors explain, high levels of turbulence promote collapse of the vapor film that occurs at the start of the quench process, and disparity in the timing causes unwanted variation in part size change throughout the load.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 228-236, October 15–17, 2019,
Abstract
View Paper
PDF
This paper presents a computational approach for assessing the potential for distortion when using high pressure gas to quench steel parts. It explains how to account for component geometry, heat transfer coefficient, gas temperature and velocity, heating and cooling rates, and phase transformations. The authors employ finite element modeling methods to determine local phase fraction and displacement in a Ferrium C64 disk for different quench pressures. Simulations at timed intervals show how distortion and phase fraction progress in different areas of the disk and along the edges of an off-center bore. The causes of distortion are examined and explained using the model, with insights into why the cooling rate has a nonlinear relation with distortion.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 237-244, October 15–17, 2019,
Abstract
View Paper
PDF
Press quenching is often used to harden parts that are sensitive to distortion, but it is a difficult process to control due to the effects of tooling and the relatively large number of process parameters. In this paper, the authors show how they use finite element analysis to optimize the process and tooling design for a spiral bevel gear made of carburized 9310 steel. Several designs adaptations are assessed, one of which is shown to minimize radial shrinkage and taper distortion in the inner diameter of the bore.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 245-252, October 15–17, 2019,
Abstract
View Paper
PDF
This paper describes the inner workings of a gas quenching chamber and assesses its potential for high-volume production of precision gears. The cooling manifold in the chamber surrounds the part, which sits on a rotating table. This ensures uniform flow of cooling gas across the top, bottom, and sides of the part and achieves uniform and repeatable quenching results. In addition, because the cooling nozzles can be adjusted to fit the geometry and size of the part, distortion can be effectively controlled.