Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 109
Microstructure
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 23-27, May 6–7, 2025,
Abstract
View Papertitled, Initial Shape Optimization of Gears Using Response Phase Method
View
PDF
for content titled, Initial Shape Optimization of Gears Using Response Phase Method
Our group is working on the optimization of the initial shape using the response phase method as a method for this purpose. In our previous research, we have been able to obtain a shape close to the target size after heat treatment of flat plates by optimizing the initial shape. In this study, we applied this method to gear geometry and optimized the initial geometry.
Proceedings Papers
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 51-57, May 6–7, 2025,
Abstract
View Papertitled, The Influence of Geometrical Features on Residual Stresses in Additively Manufactured 316L for Lightweight Engineering
View
PDF
for content titled, The Influence of Geometrical Features on Residual Stresses in Additively Manufactured 316L for Lightweight Engineering
The localized heat input during laser powder bed fusion (PBF-LB) additive manufacturing creates unique thermal histories resulting in distinctive residual stress distributions and microstructures that affect fatigue performance. This study examines the relationship between geometrical features and residual stresses in 316L stainless steel components with topology-optimized geometries such as Y-struts and various node shapes.
Proceedings Papers
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 68-77, May 6–7, 2025,
Abstract
View Papertitled, Influence of As-Built Microstructure and Thermal Post-Processing on the Fatigue Strength of AISI 4140 Manufactured by Laser Powder Bed Fusion
View
PDF
for content titled, Influence of As-Built Microstructure and Thermal Post-Processing on the Fatigue Strength of AISI 4140 Manufactured by Laser Powder Bed Fusion
This study examines the impact of thermal post processing, specifically induction hardening and tempering, on the fatigue performance of laser powder bed fusion (PBF-LB) manufactured AISI 4140 steel. Results highlight the importance of porosity control, with induction hardening effectively addressing near-surface porosity issues in non-machined parts.
Proceedings Papers
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 96-110, May 6–7, 2025,
Abstract
View Papertitled, Influence of Quenchant Temperature on Microstructure and Hardness in Jominy End Quench Tests for AISI 4135 Steel
View
PDF
for content titled, Influence of Quenchant Temperature on Microstructure and Hardness in Jominy End Quench Tests for AISI 4135 Steel
The temperature of the quenchant and the severity of the quench can significantly influence the mechanical properties, phase transformations, and hardness of steels. This study examines the influence of quenchant temperature through experimental and numerical simulations to predict temperature profiles and phase fraction distributions for AISI 4135 steel.
Proceedings Papers
Heat Treatment Simulation of SAE 1060 Steel Using Polyacrylate Aqueous Solution as Quenching Media
Free
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 129-132, May 6–7, 2025,
Abstract
View Papertitled, Heat Treatment Simulation of SAE 1060 Steel Using Polyacrylate Aqueous Solution as Quenching Media
View
PDF
for content titled, Heat Treatment Simulation of SAE 1060 Steel Using Polyacrylate Aqueous Solution as Quenching Media
This work aims to contribute to the optimization of the simulation process in the heat treatment industry. Cooling curves of a polyacrylate-based (ACR) polymer solution at a concentration of 9 and 12 %, using an axial flow rate of 1.30 L/min on an immersion system and a fluid temperature of 45 °C were acquired and analyzed. Air quenching was also used to compare the polymer quenching conditions.
Proceedings Papers
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 182-191, May 6–7, 2025,
Abstract
View Papertitled, Reducing Heat Treat Distortion with Repeating Precision by Use of Four-Dimensional High Pressure Gas Quenching
View
PDF
for content titled, Reducing Heat Treat Distortion with Repeating Precision by Use of Four-Dimensional High Pressure Gas Quenching
Oil, polymer, and gas quenching have long been used due to their effectiveness in cooling components rapidly to achieve the desired microstructure. However, they often cause distortion, complicating post-manufacturing corrections. A newer approach, Four-Dimensional Quenching (4DQ), uses high-pressure gas as the quenching medium and allows precise control over gas flow. This method significantly reduces distortion and ensures consistency across components.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 41-49, September 30–October 3, 2024,
Abstract
View Papertitled, Characterization of Martensitic-Bainitic Mixed Microstructures Created by Inductive Short Time Austempering of AISI 4140
View
PDF
for content titled, Characterization of Martensitic-Bainitic Mixed Microstructures Created by Inductive Short Time Austempering of AISI 4140
Induction surface hardening is a process often used in industrial applications to efficiently increase the lifetime of components. Recently, this process has been enhanced with the inductive short time austempering process, creating a martensitic-bainitic microstructure. It is well-known that in homogeneous mixed microstructures, an optimally adjusted volume fraction of bainite can significantly increase the lifetime of the components even further. Regarding inductive short time austempering, there is a lack of knowledge in characterizing and differentiating graded microstructures, which occur due to the temperature gradients within the process. Therefore, three methods were investigated: the analysis of the grayscale profile of metallographic sections, the hardness profile and the full width at half maximum (FWHM) profile from the intensity curve (rocking curve) of the X-ray diffraction pattern. These methods were initially applied to homogeneous structures and evaluated. The findings were then transferred to graded microstructures. Finally, the graded microstructures could be differentiated both via the hardness profile and the FWHM value, while the grayscale analysis only allowed qualitative statements to be made. It became evident that both the volume fractions and their structure are crucial for subsequent mechanical characterization. Since the martensitic microstructure is easier to identify, it serves as a reliable reference for evaluating the mixed microstructure. In summary, these findings offer the foundation for further characterization of graded martensitic-bainitic mixed microstructures.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 97-106, September 30–October 3, 2024,
Abstract
View Papertitled, CoCrFeNiTi High-Entropy Sintered Alloy with Metal Screen Direct Current Plasma Nitriding
View
PDF
for content titled, CoCrFeNiTi High-Entropy Sintered Alloy with Metal Screen Direct Current Plasma Nitriding
High-entropy alloys (HEA) are multinary alloys obtained by blending at least five metallic elements in compositions close to their isoatomic fractions (5–35 at%). Generally, HEAs are produced by arc melting and casting. However, the cast specimens undergo phase separation and have a non-uniform microstructure. In contrast to ingot metallurgy, powder metallurgy has several advantages such as the possibility of alloying metals with high melting points and large differences in melting points and specific gravity. Therefore, we investigated the preparation of HEAs by mechanical alloying (MA), which produces an alloy powder with a uniform microstructure, followed by consolidation by spark plasma sintering (SPS). In this study, CoCrFeNiTi HEA sintered after MA-SPS was subjected to direct current plasma nitriding with screen (S-DCPN) to evaluate the characteristics of the nitrided layer as a function of nitriding temperature. Ball milling with heptane in an argon atmosphere using pure powders of Co, Cr, Fe, Ni, and Ti as raw materials was performed for 50 h. Subsequently, sintered compacts were prepared by SPS and treated with S-DCPN at 673, 773, and 873 K for 15 h in 75% N 2 –25% H 2 at a gas pressure of 200 Pa. A screen made of austenitic stainless steel SUS316L was installed as an auxiliary cathode to ensure uniform heating and nitrogen supply during the plasma nitridation process. Then, X-ray diffraction test, cross-sectional microstructure observation, surface microstructure observation, cross-sectional hardness test, roughness test, glow discharge optical emission spectrometry, corrosion test, and wear test were performed on the nitrided samples. The corrosion test results demonstrated that corrosion resistance increased with decreasing nitriding temperature. Furthermore, the results of the roughness and wear tests confirmed that abrasive wear occurred on the specimens nitrided at 873 K.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 122-131, September 30–October 3, 2024,
Abstract
View Papertitled, Intensively Quenched Steels for Stronger Parts
View
PDF
for content titled, Intensively Quenched Steels for Stronger Parts
An intensive quenching (IQ) process is an environmentally friendly method of hardening steel parts. Digitally controlled, IQ employs highly agitated and directed water flow as the quenchant. An extremely high cooling rate applied uniformly over the entire part surface area induces high surface compressive stresses which prevents part distortion and cracking while forming a very fine microstructure. The fine microstructure results in better mechanical properties compared to properties imparted by conventional oil or polymer quenching. The improved mechanical properties enable engineers to design stronger steel parts for higher power density mechanical systems often using steels containing a less amount of alloying elements or using less expensive plain carbon steels. A broad and deep body of knowledge documents IQ’s ability to tailor a steel component’s microstructure to improve steel parts mechanical properties and performance. A sampling of data will be presented including surface and core hardness, tensile, yield and impact strength, elongation and reduction in area, residual surface compressive stresses for through hardened steels and the carburized grades. IQ systems can be readily “dropped in” to existing steel processing facilities or integrated into next generation heating and cooling systems through teamed relationships with equipment makers and part manufacturers seeking a sustainable future.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 132-138, September 30–October 3, 2024,
Abstract
View Papertitled, Sources of Heat Treatment Distortion and Approaches for Distortion Reduction during Quench Hardening Process
View
PDF
for content titled, Sources of Heat Treatment Distortion and Approaches for Distortion Reduction during Quench Hardening Process
Heat treatment of steels is a process of modifying the mechanical properties by solid-state phase transformations or microstructural changes through heating and cooling. The material volume changes with phase transformations, which is one of the main sources of distortion. The thermal stress also contributes to the distortion, and its effect increases with solidstate phase transformations, as the material stays in the plastic deformation field due to the TRIP effect. With the basic understanding described above, the sources of distortion from a quench hardening process can be categorized as: 1) nonuniform austenitizing transformation during heating, 2) nonuniform austenite decomposing transformations to ferrite, pearlite, bainite or martensite during quenching, 3) adding of carbon or nitrogen to the material, and forming carbides or nitrides during carburizing or nitriding, 4) coarsening of carbide in tempered martensite during tempering, 5) stress relaxation from the initial state, 6) thermal stress caused by temperature gradient, and 7) nonhomogeneous material conditions, etc. With the help of computer modeling, the causes of distortion by these sources are analyzed and quantified independently. In this article, a series of modeling case studies are used to simulate the specific heat treatment process steps. Solutions for controlling and reducing distortion are proposed and validated from the modeling aspect. A thinwalled part with various wall section thickness is used to demonstrate the effectiveness of stepped heating on distortion caused by austenitizing. A patented gas quenching process is used to demonstrate the controlling of distortion with martensitic transformation for high temperature tempering steels. The effect of adding carbon to austenite on size change during carburizing is quantified by modeling, and the distortion can be compensated by adjusting the heat treat part size.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 183-192, September 30–October 3, 2024,
Abstract
View Papertitled, Optimization of the Post-Heat Treatment of Additively Manufactured IN625
View
PDF
for content titled, Optimization of the Post-Heat Treatment of Additively Manufactured IN625
Nickel-based Inconel 625 is widely used for both low and high-temperature applications. It has several applications in aerospace, marine, chemical, and petrochemical industries due to its high strength, corrosion resistance, good formability, and weldability. With the molten pool’s rapid solidification during laser powder bed fusion (LPBF), the resulting microstructures differ from those expected in equilibrium conditions. Residual stresses, microsegregation, anisotropy, undesirable phases, layered structure, and lower mechanical properties are the challenges that must be addressed before LPBF-ed Inconel 625 parts can be industrially implemented. Heat treatment of Inconel 625 after the LPBF process is widely discussed in the literature, and the proposed heat treatment processes do not address all the challenges mentioned above. For this reason, specific heat treatments should be designed to achieve desired mechanical properties. Five different high-temperature heat treatment procedures were developed and tested in recent work in comparison with the standard heat treatment for wrought alloy (AMS 5599), to study the effect of various heat treatment parameters on the type of precipitates, grain size, room, and elevated temperature mechanical properties, and to develop an elevated-temperature tensile curve between room temperature (RT) and 760°C of LPBF-ed Inconel 625. Four heat treatment procedures showed complete recrystallization and the formation of equiaxed grain size containing annealed twins and carbide precipitates. However, either eliminating the stress relief cycle or conducting it at a lower temperature resulted in microstructures having the same pool deposition morphology with grains containing dendritic microstructure and epitaxial grains. Two different grain sizes could be obtained, starting with the same as-built microstructure by controlling post-process heat treatment parameters. The first type, coarse grain size (ASTM grain size No. G 4.5), suitable for creep application, was achieved by applying hot isostatic pressing (HIP) followed by solution annealing. The second type, fine-grain size (ASTM grain size No. G 6), preferable for fatigue properties, was achieved by applying solution annealing followed by HIP. The mechanical properties at room and elevated temperature 540°C are higher than the available properties in the AMS 5599 for wrought Inconel 625 while maintaining a higher ductility above the average level found in the standards. It can be concluded that the performed heat treatment achieves higher mechanical properties. The values of ultimate tensile strength (UTS), yield strength (YS), elongation, and reduction of area percentages are similar in the XZ and XY orientations, revealing the presence of isotropic microstructure. The ultimate tensile strength values show an anomalous behavior as a function of the temperature. From the room temperature until around 500°C, there occurs a decrease in the yield strength and a slight increase up to 600°C, decreasing sharply at 700°C. An anomaly is also present in relation to the elongation, with a significant decrease in the elongation at temperatures after 600°C.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 208-211, September 30–October 3, 2024,
Abstract
View Papertitled, Influence of Time and Temperature on Decarburization Rates for AISI 52100 Steel
View
PDF
for content titled, Influence of Time and Temperature on Decarburization Rates for AISI 52100 Steel
Decarburization of steel parts during heat treating results in a lower surface hardness, undesirable residual stress profiles, and poor part performance. Significant effort has been made towards preventing decarburization and determining the impact of annealing time and temperature on decarburization rate. Much of the published research has focused on medium carbon steels, ranging from 0.3wt% C to the eutectoid composition. The goal of the current research is to determine decarburization rates for steels with carbon concentrations above the eutectoid concentration. AISI 52100 steel was heated in air for 12, 24, and 36 hours at three temperature ranges (below A 1 , above A cm , and between A 1 and A cm ). Optical microscopy was used to determine the carbon concentration as a function of depth from the surface. The diffusion coefficients of carbon in austenite and ferrite plus cementite phase assemblages were calculated. These diffusion coefficients can be used in a finite difference simulation to predict decarburization at different temperatures and times.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 212-219, September 30–October 3, 2024,
Abstract
View Papertitled, Coupled CFD and Part Distortion Modeling for Gas Quenching Applications
View
PDF
for content titled, Coupled CFD and Part Distortion Modeling for Gas Quenching Applications
Manufacturers regularly employ finite-element (FE) process modeling tools for the simulation of heat treatment applications, such as quenching. These tools may utilize thermal, mechanical and microstructural calculations in the analysis of part distortion and residual stresses. Heat treatment modeling workflows are challenged by the requirement for user-provided heat transfer boundary conditions, which vary based on part geometry and process parameters. Representative Heat Transfer Coefficients (HTCs) are typically reversed-engineered using experimental thermocouple data, thermal simulations and inverse optimization methods. This paper will present ‘state of the art’ developments integrating computational fluid dynamics (CFD) capabilities into the heat treat modeling environment of the DEFORM system. It will describe how CFD and thermal modeling of a quench medium is being coupled with deformation and heat transfer modeling of a part through the use of CFD-calculated, local heat transfer boundary conditions. Studies verifying the implemented CFD methods against published literature will be summarized. Application examples will show how residual stress and distortion in parts, during single-part or batch gas quenching, is made possible by coupled CFD and thermo-mechanical process modeling tools.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 251-256, September 30–October 3, 2024,
Abstract
View Papertitled, Microstructure Optimization of High Carbon Steels for Additive Manufacturing, Heat Treatment, and Interstitial Alloying
View
PDF
for content titled, Microstructure Optimization of High Carbon Steels for Additive Manufacturing, Heat Treatment, and Interstitial Alloying
This study investigates the heat treatment response and microstructure evolution of high-carbon steels for additive manufacturing. Moreover, the role of nitrogen as an interstitial alloying element is addressed. Stainless steel 440C, cold-work D2, hot-work H13, and T15 high-speed tool steel overspray powders from spray forming were investigated. The thermal behavior of these materials was examined using a thermal analyzer that combines calorimetry and thermogravimetry. Additionally, interstitial alloying with nitrogen was performed in-situ to understand its influence on thermal behavior. The (near-)equilibrium nitrogen solubility in 440C and D2 in contact with flowing N 2 gas was recorded as a function of temperature through the interval 1200 to 800 °C. The microstructure of the steel powders was characterized by light optical microscopy and X-ray diffraction. The potential of nitrogen alloying and the importance of optimized heat treatment protocols are emphasized with respect to high-carbon steels in additive manufacturing applications.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 257-265, September 30–October 3, 2024,
Abstract
View Papertitled, Overview of Professor Tatsuo Inoue’s Contributions to the Field of Heat Treatment Simulation
View
PDF
for content titled, Overview of Professor Tatsuo Inoue’s Contributions to the Field of Heat Treatment Simulation
Prof. Tatsuo Inoue passed away on September 23, 2023, at the age of 83. He held a professorship at Kyoto University from 1983 to 2003 and made significant contributions to the theory of heat treatment simulation, which is now widely used. His theory was reported at an international conference in Linkoping, Sweden in 1984. Fundamental equations in his theory cover metallurgical coupling effects caused by changes due to phase transformation, temperature, and inelastic stress/strain as well as carbon diffusion during the carburizing process. Prof. Inoue designated these effects as “metallothermo- mechanical coupling”. Software applying his theory was presented at ASM International’s 1st International Conference on Quenching and the Control of Distortion in 1992, where its advanced nature was recognized. In 1994, Prof. Inoue published a paper on the application of heat treatment simulation to the quenching of Japanese swords, revealing changes in temperature, curving, microstructure, and stress/strain in their model during the traditional quenching process. In 2017, he published “The Science of Japanese Swords” with Sumihira Manabe, a swordsmith, to communicate his specific achievements to the general public.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 272-280, September 30–October 3, 2024,
Abstract
View Papertitled, Impact of Quenching Intensity Conditions on Using a Finite Element Model to Investigate the Microstructure and Hardenability of Low-Alloy Steel
View
PDF
for content titled, Impact of Quenching Intensity Conditions on Using a Finite Element Model to Investigate the Microstructure and Hardenability of Low-Alloy Steel
Quenching is one of the primary processes to improve mechanical properties in steels, particularly hardness. Quenching is well established for different geometries of individually treated steel components; while in-steam quenching of large diameter continuously cast steel bar has several specific features which are difficult and costly to experimentally optimize. The end-quench Jominy test has been used extensively to study the hardenability of different steel grades. Different numerical, analytical, and empirical models have been developed to simulate the Jominy process and to understand quenching of steels. However, it is not straight forward to translate experimental data from Jominy test on instream quenched large diameter continuously cast products. Therefore, in this work, coupled thermal, mechanical, and metallurgical models were used to simulate the end-quench Jominy test and in-stream quenched industrial round billets with a goal to obtain similarity of experimental structure and properties for both quenched products. For this purpose, finite element analysis (FEA) was employed using the software FORGE (by Transvalor). Used thermophysical properties were generated by JMATPro software. The evolution of microstructure during quenching and resulting hardness were simulated for AISI 4130, and AISI 4140 steel grades. The cooling rates at different positions in the Jominy bar were determined by simulation and compared to experimental. After verification and validation, the FEA simulation was utilized to predict different phases and hardness at different conditions in industry produced round billets. Additionally, relations between Jominy positions and radial positions in the billet were established allowing us to predict structure and properties in inline quenched continuously cast bar having different diameters.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 288-296, September 30–October 3, 2024,
Abstract
View Papertitled, Effects of Surface Induction Hardening on the Torsional Fatigue Performance of Previously Carburized Modified 4121 Steel
View
PDF
for content titled, Effects of Surface Induction Hardening on the Torsional Fatigue Performance of Previously Carburized Modified 4121 Steel
Carburizing and induction hardening are two surface heat treatments commonly used to increase wear resistance and fatigue performance of steel parts subject to cyclical torsional loading. It was originally hypothesized that performing an induction surface hardening heat treatment on parts previously carburized could provide further increased fatigue life, however initial torsional fatigue results from previous work indicated the opposite as the as-carburized conditions exhibited better torsional fatigue strength than the carburized plus induction surface hardened conditions. The aim of this work is to further elucidate these torsional fatigue results through metallography and material property characterization, namely non-martensitic transformation product (NTMP) analysis, prior austenite grain size (PAGS) analysis, and residual stress vs depth analysis using x-ray diffraction (XRD). A carburizing heat treatment with a case depth of 1.0 or 1.5 mm and an induction hardening heat treatment with a case depth of 0, 2.0, or 3.0 mm were applied to torsional fatigue specimens of 4121 steel modified with 0.84 wt pct Cr. The carburized samples without further induction processing, the 0 mm induction case depth, served as a baseline for comparison. The as-received microstructure of the alloy was a combination of polygonal ferrite and upper bainite with area fractions of approximately 27% and 73% respectively. The only conditions that exhibited NMTP were the as-carburized conditions. These conditions also exhibited larger average PAGS and higher magnitude compressive residual stresses at the surface compared to the carburized plus induction hardened conditions. The compressive residual stresses offer the best explanation for the trends observed in the torsional fatigue results as the conditions with NMTP present and larger PAGS exhibited the best torsional fatigue performance, which is opposite of what has been observed in literature.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 312-315, September 30–October 3, 2024,
Abstract
View Papertitled, Innovation in AlSl M2 Steel through Additive Manufacturing and Induction Heat Treatment
View
PDF
for content titled, Innovation in AlSl M2 Steel through Additive Manufacturing and Induction Heat Treatment
Additive manufacturing is increasingly used in a variety of applications. Directed Energy Deposition (DED) technology using powder feedstock enables the production of materials in combinations that would be very problematic using conventional technologies. DED is a technological process where the fed material is melted directly at the desired location using a laser beam. The research described here deals with the additive manufacturing and subsequent induction heat treatment of a functional deposited layer of M2 high-speed steel. Induction treatment has the advantage that only the functional layer of the component can be heat treated without affecting the base material. It is therefore possible to heat treat a combination of completely different materials with different properties without degrading the base material. Hardness values reached 950 HV (68 HRC) both after additive manufacturing and after additive manufacturing and induction treatment. Induction heat treatment of the deposited M2 layer ensured removal of traces of the original melt pools produced by the additive manufacturing. Investigation of the microstructure and mechanical properties of M2 tool steel after induction heat treatment produced by DED highlights its potential for high performance tooling and machining applications. The main objective of this research is to improve the final properties and tool life of forming tools when the tool is made of less expensive low-alloy steel and its functional layer is made of M2 high speed steel using additive manufacturing technology.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 332-337, September 30–October 3, 2024,
Abstract
View Papertitled, Impact of Solidification Segregation on the Thermal Stability of Oxides and Nitrides in Additively Manufactured 316L Austenitic Stainless Steel
View
PDF
for content titled, Impact of Solidification Segregation on the Thermal Stability of Oxides and Nitrides in Additively Manufactured 316L Austenitic Stainless Steel
The increasing demand for accurate fatigue modeling of powder metallurgy components in automotive, aerospace, and medical industries necessitates improved knowledge of composition-microstructure interactions. Variations in feedstock composition and thermomechanical history can produce unique microstructures whose impact on fatigue performance has not been adequately quantified. When characterizing additively manufactured 316L that is within nominal standard chemistry limits, oxide and nitride species were observed preferentially in the specimen contour region. Thermodynamic simulations provide evidence of segregation of the low manganese and high nitrogen composition driving this precipitation of these phases. When present in the specimen, they promoted brittle fracture mechanisms during fatigue.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 338-345, September 30–October 3, 2024,
Abstract
View Papertitled, Developing Statistical Tools to Analyze Contributions to the Fatigue Performance of Additively Manufactured Materials
View
PDF
for content titled, Developing Statistical Tools to Analyze Contributions to the Fatigue Performance of Additively Manufactured Materials
With the increasing amount of historical fatigue data for advanced manufacturing processes, such as additive manufacturing, it becomes increasingly feasible to use statistical and machine learning approaches to garner deeper insights into the contributions to fatigue performance in order to improve the design for fatigue failure or processing route parameters. Prior to model development, aggregated datasets, whether compiled through manual or automated processes, require extensive verification and profiling to eliminate systematic errors and identify insufficiently investigated parameter combinations. Without these steps, the veracity of any model, especially black-box models, is dubious. Once the structure and patterns of the dataset are established, proper implementation of random imputation can be used to expand the amount of usable data. This verified and augmented dataset can now be subjected to various statistical tools whose role in data exploration will be discussed, particularly regarding the role of distinguishing porosity- and microstructure-driven fatigue failure data.
1