Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Grain morphology
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Effect of Thermomechanical Rolling of the Induction Hardenability of a Micro-Alloyed 1045 Steel
Free
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 125-131, September 14–16, 2021,
Abstract
View Papertitled, Effect of Thermomechanical Rolling of the Induction Hardenability of a Micro-Alloyed 1045 Steel
View
PDF
for content titled, Effect of Thermomechanical Rolling of the Induction Hardenability of a Micro-Alloyed 1045 Steel
A micro-alloyed 1045 steel was commercially rolled into 54 mm diameter bars by conventional hot rolling at 1000 °C and by lower temperature thermomechanical rolling at 800 °C. The lower rolling temperature refined the ferrite-pearlite microstructure and influenced the microstructural response to rapid heating at 200 °C·s -1 , a rate that is commonly encountered during single shot induction heating for case hardening. Specimens of both materials were rapidly heated to increasing temperatures in a dilatometer to determine the A c1 and A c3 transformation temperatures. Microscopy was used to characterize the dissolution of ferrite and cementite. Continuous cooling transformation (CCT) diagrams were developed for rapid austenitizing temperatures 25 °C above the A c3 determined by dilatometry. Dilatometry and microstructure evaluation along with hardness tests showed that thermomechanical rolling reduced the austenite grain size and lowered the heating temperature needed to dissolve the ferrite. With complete austenitization at 25 °C above the A c3 there was little effect on the CCT behavior.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 18-25, October 15–17, 2019,
Abstract
View Papertitled, Hybrid Manufacturing: Influence of Directed Energy Deposition Parameters on Microstructure and Layer Adhesion of Stainless Steel 316L
View
PDF
for content titled, Hybrid Manufacturing: Influence of Directed Energy Deposition Parameters on Microstructure and Layer Adhesion of Stainless Steel 316L
In-envelope hybrid manufacturing systems comprised of directed energy deposition (DED) and machining provide flexibility for the fabrication of complex geometries with minimal setup changes. However, for these manufacturing set ups, the effects of deposition parameters such as laser power and scanning speed on the quality of the build remain relatively unexplored. An important aspect for developing components with reliable mechanical properties is a thorough understanding of DED thermodynamics during fabrication. Therefore, DED thermodynamics were defined based on the strengthening properties derived from the thermal gradient (G) and solidification rate (R) of the melt pool. Other factors influencing DED thermodynamics include substrate geometry and surface finish which are expected to affect cooling rates and adhesion, respectively. In this work, stainless steel 316L specimens were fabricated varying laser power intensity, scanning speed, and deposition substrate. The effect of these parameters on the microstructure of the sample components were analyzed. Microstructural evolution at various points within and between layers was studied and correlated to localized hardness. An increase in mechanical properties for fine, equiaxed grains demonstrates the Hall-Petch principle for strengthening of components.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 316-321, October 15–17, 2019,
Abstract
View Papertitled, An Approach to Micro Segregation Level and Presence of Quench Cracks in Medium Carbon Low Alloy Steels
View
PDF
for content titled, An Approach to Micro Segregation Level and Presence of Quench Cracks in Medium Carbon Low Alloy Steels
Samples from forged and heat-treated steel products with known quench crack histories have been mapped in order to study a possible relation between banding segregation and quench cracking. The products were medium carbon low alloy steels produced by ingot and continuous casting. EDS X-ray mapping was used to characterize the banding pattern and tensile testing revealed corresponding properties. The experimental procedures are described in the paper along with test results and conclusions.