Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-6 of 6
Residual Stress
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 321-326, September 14–16, 2021,
Abstract
PDF
The notion that compressive residual stresses can extend the service life of components subject to rolling contact fatigue is well documented. However, the exact nature of the relationship between effective case depth and the residual stress state is not well understood for components with case depths greater than 0.050 in. (1.27 mm). It is expected that compressive residual stresses gradually transition to tensile stresses as case depth increases beyond a threshold value. This study will measure the residual stress state of components with different case depths before and after simulated service in order to determine where the compressive to tensile transition occurs. It will also investigate the role of retained austenite and the effect of strain-induced transformation caused by rolling contact. Residual stress and retained austenite measurements will be conducted using X-ray diffraction.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 327-333, September 14–16, 2021,
Abstract
PDF
Vacuum carburizing 9310 gear steel followed by austenitizing, oil quench, cryogenic treatment, and tempering is known to impact the residual stress state of the material. Residual stress magnitude and depth distribution can have adverse effects on part distortion during intermediary and finish machining steps. This study provides residual stress measurement, microstructural, and mechanical property data for test samples undergoing a specific heat treat sequence. Test rings of 9310 steel are subjected to a representative gear manufacturing sequence that includes normalizing, rough machining, vacuum carburizing to 0.03”, austenitizing, quench, cryo-treatment, temper, and finish machining. The rings along with metallurgical samples are characterized after each step in order to track residual stress and microstructural changes. The results presented here are particularly interesting because the highest compressive residual stresses appear after removal of copper masking, not after quenching as expected. Data can be used for future ICME models of the heat treat and subsequent machining steps. Analytical methods employed include X-ray diffraction, optical and electron microscopy, and hardness testing.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 87-91, September 14–16, 2021,
Abstract
PDF
Plain carbon steel cylinders were heat treated and quenched in order to study the effects of heat treating on residual stresses and microstructure. Residual stress measurements were obtained via X-ray diffraction using the sin 2 Ψ method and microstructure was characterized based on the associated peak widths. Measurements were made both at the surface and through depth following electropolishing. Triaxial stress gradients were observed in all test samples with concomitant varying microstructural characteristics. The method used to measure residual stresses in this study is typical and recommended for general practice.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 92-95, September 14–16, 2021,
Abstract
PDF
Forging processes include various steps to attain favorable material properties such as heat treatment, rapid quench, cold work stress relieving, and artificial aging. These steps, however, also contribute to bulk residual stress. Excessive bulk residual stresses cause a wide of problems, including part distortion during machining and in use, reduced crack initiation life, increased crack growth rates, and an overall reduction in part life. This paper summarizes recent work aimed at measurement-based assessment of bulk residual stresses in cold-compressed aluminum die forgings. The results show that forging process induced residual stress is a repeatable phenomenon with RMS repeatability less than 5% of yield.
Proceedings Papers
Julianne E. Jonsson, Michael R. Hill, Christopher R. Chighizola, Christopher R. D’Elia, Barbara S. Linke ...
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 96-99, September 14–16, 2021,
Abstract
PDF
Undesired distortion can arise during machining of metals from two main mechanisms: 1) release of bulk residual stress in the pre-form, and 2) deformation induced by the cutting tool. The interaction between these two mechanisms is explored herein using aluminum plate-shaped samples that have a large surface with variations of bulk residual stress (BRS), where that surface is subsequently milled and we observe milling-induced residual stress (MIRS) and distortion. Plate samples are cut from two kinds of large blocks, one kind stress-relieved by stretching and a second kind that had been solution heat treated, quenched, and aged. MIRS is measured following milling using hole-drilling with fine depth increments. Distortions of thin wafers cut at the milled surfaces are used to show how the interactions between BRS and MIRS change milling-induced distortion. Data from the study show that the directions of MIRS and distortion relative to the milling direction are changed when milling in samples with high BRS magnitude (roughly ±100 MPa), with the direction of maximum curvature rotating toward or away from the milling direction depending on the sign and direction of BRS. High magnitude BRS increased distortion, nearly doubling the amount found compared to milling in samples free of BRS.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 100-102, September 14–16, 2021,
Abstract
PDF
This paper provides an overview of the types of residual stress that engineers deal with and the tools and techniques available to measure it. It identifies the causes of manufacturing-induced residual stress along with their effects. It summarizes the practical aspects of a wide range of measurement methods, including hole drilling, layer removal, contour, lab XRD, and synchrotron analysis. It assesses current challenges and gaps in determining stress in relation to stress type, stress component, microstructure, specimen geometry, materials type, and measurement location.