Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-13 of 13
Quenching Technologies
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 82-87, October 17–19, 2023,
Abstract
View Papertitled, Analysis of Induction Hardened Cylinders
View
PDF
for content titled, Analysis of Induction Hardened Cylinders
Induction hardening is used to harden small cylinders of SAE 1074 steel. Parts were quenched with a high concentration of a polyalkylene glycol (PAG) type quenchant. Soft spots were found on a small percentage of the parts. These soft spots were consistently at one location about 2/3 from the bottom of the part. These soft spots were circular, and consistent in size. The product was examined and determined to be adequate and to specification. Using a lower concentration of quenchant, the quench speed was increased. While this reduced the number of soft spots, it did not eliminate the soft spots. Faster quenches were tried with similar results. Using Transvalor SIMHEAT, we were able to duplicate the results, and eliminate the source of soft spots.
Proceedings Papers
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 88-97, October 17–19, 2023,
Abstract
View Papertitled, Estimation of Heat Flux Transient During Quench Hardening of Varying Diameter Steel Probes Using IHCP-Phase Transformation Coupled Model
View
PDF
for content titled, Estimation of Heat Flux Transient During Quench Hardening of Varying Diameter Steel Probes Using IHCP-Phase Transformation Coupled Model
The phase transformation model is coupled with the inverse heat conduction problem (IHCP) to estimate the steel/quenchant interfacial heat flux. Cylindrical steel probes having section thicknesses 25 and 50mm, respectively, and lengths 30mm were made from medium and high carbon steels (AISI 1045 and 52100). The probes were quenched in mineral, neem, and sunflower oils. The cooling curves at the centre and near the surface of steel probes were recorded. The near-surface cooling curve was used as a reference temperature data in the IHCP algorithm for the estimation of surface heat flux, whereas the cooling curve at the centre was used as the boundary condition of the axisymmetric model of the probe. The effect of phase transformation on the metal/quenchant interfacial heat flux was indicated by a kink and rise of heat flux. The increase in the section thickness of the probe from 25 to 50mm decreased the magnitude of the heat flux. Increasing section thickness increases the phase transformation, increasing the resistance to heat flow at the metal/quenchant interface.
Proceedings Papers
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 98-105, October 17–19, 2023,
Abstract
View Papertitled, Mythological Quenchants of Ancient Blacksmiths
View
PDF
for content titled, Mythological Quenchants of Ancient Blacksmiths
Archaeological digs have found many types of knives, with varying quality of steel and microstructure. Typically, these steels are carbon steels with carbon contents on the order of 0.60%. Historically, there have been many myths concerning the quenchants used by ancient blacksmiths in the heat treatment of swords and knives. Various liquids have been cited in the archaeometallurgical literature as quenchants. Each of these quenchants is supposed to extend to the knife special and even mythical properties. However, none have been examined for cooling curve behavior. In this paper, various quenchants are examined for typical heat transfer, and microstructure is predicted for simple steels commonly used in ancient knife making.
Proceedings Papers
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 106-113, October 17–19, 2023,
Abstract
View Papertitled, Analysis of Industrial Quenching (Air Transfer + Oil Immersion) and the Cooling Regimes after Immersion
View
PDF
for content titled, Analysis of Industrial Quenching (Air Transfer + Oil Immersion) and the Cooling Regimes after Immersion
Standard laboratory test methods are useful to compare the cooling performance and cooling regimes of different quenchants under controlled environments where quenching occurs almost immediately. In reality, many industries rely on systems that require transferring through air from the austenitizing furnace to the quench tank. In this project, a special quench probe apparatus is used to characterize an industrial quenching process involving air transfer followed by quenching in low viscosity oil. The probe system allows investigation of the non-homogeneous condition before immersion. The heterogeneity of the process, through air and in the oil, is captured by modifying the position and orientation of the quench probes among many experiments. Multiple characteristic points were identified during the boiling stage due to its physical significance to produce time dependent analytical curves built up through piecewise polynomial interpolation while an optimization algorithm models the convective stage. Inverse analysis is carried out with the data captured by the probes to estimate time dependent temperature boundary conditions. The output can further be computed into a temperature dependent heat transfer coefficient curve. Results indicate that the phenomena occurring after immersion differ from laboratory results thus demonstrating the significance of characterizing the actual industrial process.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 263-270, September 14–16, 2021,
Abstract
View Papertitled, Process to Minimize Distortion during High Pressure Gas Quenching Processes
View
PDF
for content titled, Process to Minimize Distortion during High Pressure Gas Quenching Processes
A gas quenching method was developed by DANTE Solutions, in conjunction with the U.S. Army Combat Capabilities Development Command Aviation & Missile Center (DEVCOM AvMC), to control distortion in difficult to quench geometries. This new method addresses the nonuniform cooling inherent in most gas quenching processes. A prototype unit was constructed and tested with the aim of controlling the martensite formation rate uniformity in the component being quenched. With the ability of the DANTE Controlled Gas Quenching (DCGQ) unit to control the temperature of the quench gas entering the quench chamber, thermal and phase transformation gradients are significantly reduced. This reduction in gradients yields a more uniform phase transformation, resulting in reduced and predictable distortion. Being able to minimize and predict distortion during gas quenching, post heat treatment finishing operations can be reduced or eliminated, and as such, fatigue performance can be improved. This paper will discuss the prototype unit performance. Mechanical testing and metallographic analysis were also performed on Ferrium C64 alloy steel coupons and will be discussed. The results obtained showed that the slower cooling rate provided by the prototype did not alter the microstructure, hardness, strength, ductility, toughness, or residual stress of the alloy.
Proceedings Papers
Quantitative Characterization of Organic Quenchant’s Heat Transfer by using Fireworks Algorithm
Free
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 271-279, September 14–16, 2021,
Abstract
View Papertitled, Quantitative Characterization of Organic Quenchant’s Heat Transfer by using Fireworks Algorithm
View
PDF
for content titled, Quantitative Characterization of Organic Quenchant’s Heat Transfer by using Fireworks Algorithm
The knowledge of the thermal boundary conditions helps to understand the heat transfer phenomena that takes place during heat treatment processes. Heat Transfer Coefficients (HTC) describe the heat exchange between the surface of an object and the surrounding medium. The Fireworks Algorithm (FWA) method was used on near-surface temperature-time cooling curve data obtained with the so-called Tensi multithermocouple 12.5 mm diameter x 45 mm Inconel 600 probe. The fitness function to be minimized by a Fireworks Algorithm (FWA) approach is defined by the deviation of the measured and calculated cooling curves. The FWA algorithm was parallelized and implemented on a Graphics Processing Unit architecture. This paper describes the FWA methodology used to compare and differentiate the potential quenching properties of a series of vegetable oils, including cottonseed, peanut, canola, coconut, palm, sunflower, corn, and soybean oil, versus a typical accelerated petroleum oil quenchant.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 280-292, September 14–16, 2021,
Abstract
View Papertitled, On the Construction of Analytical Cooling Curves from ASTM D6200 Data Using Multi-Variable Gradient Descent Method
View
PDF
for content titled, On the Construction of Analytical Cooling Curves from ASTM D6200 Data Using Multi-Variable Gradient Descent Method
ASTM D6200 is a standard test method to evaluate cooling characteristics of quench oils. The test produces six discrete numbers representing the cooling characteristics: three temporal scales (time to cool to 600°C, 400°C, and 200°C), two cooling rates (max cooling rate and cooling rate at 300°C), and one temperature scale (at max cooling rate). One of the main purposes of ASTM D6200 is to monitor the oil quality to ensure gears are properly quenched. The current standard only includes specifications for gear quenching oil and its applications are limited to physical testing. The intent of this research is to explore the possibility of broadening the support for more quenchants and extending applications to virtual engineering. This research includes two parts. The first part is the development of a systematic method to identify the characteristic points of a cooling curve. The second part is the construction of an analytical cooling curve based on the characteristic points. The analytical cooling curve is a mathematical function of temperature versus time that can provide temperature at any given time in the quenching process. In addition, the curve is differentiable to provide the cooling rate information at any given time as well.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 293-301, September 14–16, 2021,
Abstract
View Papertitled, Flow Effects on the Transient Behavior of Vapor Film and Bubbles During Forced-Convective Quenching Experiments
View
PDF
for content titled, Flow Effects on the Transient Behavior of Vapor Film and Bubbles During Forced-Convective Quenching Experiments
The transient behavior of boiling phenomena during quenching of an AISI 304 stainless steel, conical-end, cylindrical probe in flowing water at 60 °C was studied. Two free-stream velocities (0.2 and 0.6 m/s) and two initial probe temperatures (850 and 950 °C) were investigated. From high-speed video recordings, undulations of the liquid vapor interface that appear periodically and propagate in the direction of the flow stream were observed during the vapor film stage. After the collapse of the vapor film, a wetting front is formed which consists of many small bubbles that coalesce rapidly in a small area while fewer and larger bubbles nucleate and grow below it. The initial temperature has a marginal effect on the size and half-life of the large bubbles. However, the water flow rate produces larger values of maximum diameter and half-life time for water flowing at 0.2 m/s than their equivalents for 0.6 m/s.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 302-308, September 14–16, 2021,
Abstract
View Papertitled, Heat Transfer Characteristics and Cooling Performance of Treated Kitchen Coconut Oil
View
PDF
for content titled, Heat Transfer Characteristics and Cooling Performance of Treated Kitchen Coconut Oil
Many alternative ecofriendly quenchants have been developed to replace mineral oil such as vegetable oils, polymer quenchants, and nanofluids. Although vegetable oils show superior cooling performance to mineral oil, their use is limited due to high production costs and low thermal stability. In this study, used coconut oil was chemically treated and its cooling and heat transfer characteristics were compared with that of refined coconut oil and mineral oil. The thermophysical properties of chemically treated waste coconut oil were found to be higher than that of the other oils tested, and its wettability proved to be better as well. Quenching experiments using an Inconel 600 probe (as per ISO 9950 and ASTM D 6200 standards) showed that the vapor blanket stage was shorter for the chemically treated oil than either of the others. The treated waste oil was also found to have the highest average peak heat flux based on the solution to the inverse heat conduction problem.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 309-314, September 14–16, 2021,
Abstract
View Papertitled, Modeling the Effect of Chemistry Changes on Phase Transformation Timing, Hardness, and Distortion in Carburized 8620 Gear Steel
View
PDF
for content titled, Modeling the Effect of Chemistry Changes on Phase Transformation Timing, Hardness, and Distortion in Carburized 8620 Gear Steel
AISI 8620 low carbon steel is widely used due to its relatively low cost and excellent case hardening properties. The nominal chemistry of AISI 8620 can have a large range, affecting the phase transformation timing and final hardness of a carburized case. Different vendors and different heats of steel can have different chemistries under the same AISI 8620 range which will change the result of a well-established heat treatment process. Modeling the effects of alloy element variation can save countless hours and scrap costs while providing assurance that mechanical requirements are met. The DANTE model was validated using data from a previous publication and was used to study the effect of chemistry variations on hardness and phase transformation timing. Finally, a model of high and low chemistries was executed to observe the changes in hardness, retained austenite and residual stress caused by alloy variation within the validated heat treatment process.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 315-320, September 14–16, 2021,
Abstract
View Papertitled, Characterization of Quenchants to Reduce Distortion Using Numerical Simulation and Validation
View
PDF
for content titled, Characterization of Quenchants to Reduce Distortion Using Numerical Simulation and Validation
Excessive distortion was observed in many small components made from 1080 steel that was neutral hardened following stamping. A study was then undertaken to determine how to reduce the distortion of the heat-treated parts while maintaining proper hardness and microstructure. A numerical simulation based on Simheat software was conducted to determine the effect of elevated temperature on the quenching oil used and its impact on distortion and microstructure. A second oil designed to operate at higher temperatures was also examined. Using Simheat software, the two oils were compared based on predicted distortion, hardness, and microstructure and the results were subsequently validated using empirical methods. It was concluded that a significant improvement in distortion could be achieved by using a different oil and higher quench temperatures.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 79-82, September 14–16, 2021,
Abstract
View Papertitled, On a Modified Approach of Measuring Quench Severity and its Application
View
PDF
for content titled, On a Modified Approach of Measuring Quench Severity and its Application
This paper presents a method for calculating quench severity based on hardness profile matching. The new method has the potential to eliminate the need for Jominy end-quench testing as required in the traditional Kern approach. To assess the accuracy of the proposed method, a test bar and Jominy bar were machined from 2-in. bar stock and heat treated in accordance with ASTM A255. The test bar was quenched in a draft-tube system with a water velocity of 6 ft/s. An excel workbook was programmed to calculate the quenched hardness profile based on prior austenite grain size and steel chemistry. The calculations were in good agreement with measured Jominy hardness as were the quench severities determined by the Kern method and the proposed hardness profile matching technique.
Proceedings Papers
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 83-86, September 14–16, 2021,
Abstract
View Papertitled, The Application of Simulation Based Product Development Practices
View
PDF
for content titled, The Application of Simulation Based Product Development Practices
This paper explains how Cummins engineers are using simulation tools to optimize complex heat treatments for highly stressed components, to better understand the effects of extreme pressure on dimensional changes, and to virtually manipulate forging-induced grain flows via component design changes. It also include a case study of a fatigue failure, further highlighting the benefits of simulation.