Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-6 of 6
Materials Durability / Mechanical Testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 153-161, September 14–16, 2021,
Abstract
View Papertitled, Heat Treatment Design of Martensitic Alloys for Engine Valvetrain Component Application – Phase Transformation and Temper Response
View
PDF
for content titled, Heat Treatment Design of Martensitic Alloys for Engine Valvetrain Component Application – Phase Transformation and Temper Response
Phase transformation and temper response of three martensitic alloys were investigated as an important portion of fundamental metallurgical information database related to heat treatment design for engine component applications. A limited metallographic evaluation has also been carried out with selected temper response run samples in this study. Basic descriptions on adequate hardening and tempering parameter design were provided in terms of optimizing the intended performance with these alloys.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 162-168, September 14–16, 2021,
Abstract
View Papertitled, Hydrogen Embrittlement Resistance of High Strength 9260 Bar Steel Heat Treated by Quenching and Partitioning
View
PDF
for content titled, Hydrogen Embrittlement Resistance of High Strength 9260 Bar Steel Heat Treated by Quenching and Partitioning
The influence of microstructure on hydrogen embrittlement of high strength steels for fastener applications is explored in this study. Space limiting applications in areas such as the automotive or agricultural industries provide a need for higher strength fasteners. Albeit, hydrogen embrittlement susceptibility typically increases with strength. Using a 9260 steel alloy, the influence of retained austenite volume fraction in a martensitic matrix was evaluated with microstructures generated via quenching and partitioning. X-ray diffraction and scanning electron microscopy were used to assess the influence of retained austenite in the matrix with different quenching parameters. The quench temperatures varied from 160 °C up to 220 °C, and a constant partitioning temperature of 290 °C was employed for all quench and partitioned conditions. The target hardness for all testing conditions was 52-54 HRC. Slow strain rate tensile testing was conducted with cathodic hydrogen pre-charging that introduced a hydrogen concentration of 1.0-1.5 ppm to evaluate hydrogen embrittlement susceptibility of these various microstructures. The retained austenite volume fraction and carbon content varied with the initial quench temperature. Additionally, the lowest initial quench temperature employed, which had the highest austenite carbon content, had the greatest hydrogen embrittlement resistance for a hydrogen concentration level of 1.0-1.5 ppm.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 169-179, September 14–16, 2021,
Abstract
View Papertitled, Ball Spalling in Rolling Element Bearings: Decrease in Rolling Contact Fatigue Life Due to Inferior Microstructure and Manufacturing Processes
View
PDF
for content titled, Ball Spalling in Rolling Element Bearings: Decrease in Rolling Contact Fatigue Life Due to Inferior Microstructure and Manufacturing Processes
Through hardened steel ball fatigue failure is an atypical mode of failure in a rolling element bearing. A recent full-scale bench test resulted in ball spalling well below calculated bearing life. Subsequent metallurgical analysis of the spalled balls found inferior microstructure and manufacturing methods. Microstructural analysis revealed significant carbide segregation and inclusions in the steel. These can result from substandard spheroidized annealing and steel making practices. In addition, the grain flow of the balls revealed a manufacturing anomaly which produced a stress riser in the material making it more susceptible to crack initiation. The inferior manufactured balls caused at least an 80% reduction in rolling contact fatigue life of the bearing.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 180-186, September 14–16, 2021,
Abstract
View Papertitled, New Generation Press Hardening Steels with Tensile Strength of 1.7-2.0 GPa and Enhanced Bendability
View
PDF
for content titled, New Generation Press Hardening Steels with Tensile Strength of 1.7-2.0 GPa and Enhanced Bendability
Press hardening steel (PHS) applications predominately use 22MnB5 AlSi coated in the automotive industry. This material has a limited supply chain. Increasing the tensile strength and bendability of the PHS material will enable light-weighting while maintaining crash protection. In this paper, a novel PHS is introduced, and properties are compared to 22MnB5. The new Coating Free PHS (CFPHS) steel, 25MnCr, has increased carbon, with chromium and silicon additions for oxidation resistance. Its ultimate tensile strength (UTS) of 1.7 GPa with bending angle above 55° at 1.4 mm thickness improves upon the 22MnB5 grade. This steel is not pre-coated, is oxidation resistant at high temperature, thus eliminating the need for AlSi or shot blasting post processing to maintain surface quality. Microstructural mechanisms used to enhance bendability and energy absorption are discussed for the novel steel. Performance evaluations such as: weldability, component level crush and intrusion testing and e-coat adhesion, are conducted on samples from industrial coils.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 187-195, September 14–16, 2021,
Abstract
View Papertitled, Fatigue Performance of Low Pressure Carbonitrided 20MnCr5 and SAE 8620 Steel Alloys
View
PDF
for content titled, Fatigue Performance of Low Pressure Carbonitrided 20MnCr5 and SAE 8620 Steel Alloys
Low pressure carbonitriding and pressurized gas quenching heat treatments were conducted on four steel alloys. Bending fatigue tests were performed, and the highest endurance limit was attained by 20MnCr5+B, followed by 20MnCr5, SAE 8620+Nb, and SAE 8620. The differences in fatigue endurance limit occurred despite similar case depths and surface hardness between alloys. Low magnitude tensile residual stresses were measured near the surface in all conditions. Additionally, nonmartensitic transformation products (NMTPs) were observed to various extents near the surface. However, there were no differences in retained austenite profiles, and retained austenite was mostly stable against deformation-induced transformation to martensite during fatigue testing, contrasting some studies on carburized steels. The results suggest that the observed difference in fatigue lives is due to differences in chemical composition and prior austenite grain size. Alloys containing B and Nb had refined prior austenite grain sizes compared to their counterparts in each alloy class.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 196-202, September 14–16, 2021,
Abstract
View Papertitled, Determining Deformation Behavior of AISI 9310 Steel Varying Temperature and Strain Rate for Aerospace Applications
View
PDF
for content titled, Determining Deformation Behavior of AISI 9310 Steel Varying Temperature and Strain Rate for Aerospace Applications
Determination of flow stress behavior of materials is a critical aspect of understanding and predicting behavior of materials during manufacturing and use. However, accurately capturing the flow stress behavior of a material at different strain rates and temperatures can be challenging. Non-uniform deformation and thermal gradients within the test sample make it difficult to match test results directly to constitutive equations that describe the material behavior. In this study, we have tested AISI 9310 steel using a Gleeble 3500 physical simulator and Digital Image Correlation system to capture transient mechanical properties at elevated temperatures (300°C – 600°C) while controlling strain rate (0.01 s -1 to 0.1 s -1 ). The data presented here illustrate the benefit of capturing non-uniform plastic strain of the test specimens along the sample length, and we characterize the differences between different test modes and the impact of the resulting data that describe the flow stress behavior.