While researchers have attempted to characterize heat transfer coefficients in spray quenching standard immersion probes, the high surface heat transfer creates steep thermal gradients that cause measurement lag and underestimate coefficients. These inaccurate measurements significantly impact predictions of microstructure, dimensions, and residual stress distribution. This study examines thermal gradients across different probe diameters and materials to determine optimal probe geometry for accurate heat transfer coefficient measurement and calculation.

This content is only available as a PDF.