Abstract
Martensitic stainless steels are an important group of steels for applications as knives, tools & molds and highly loaded parts in the food and plastics processing industry as well as for machinery components. Their typical hardening consists of quenching and (multiple) tempering (Q&T). As many of these steels contain at least smaller amounts of retained austenite (RA) after quenching, partitioning of carbon and nitrogen from the martensite into the RA can take place during tempering, changing it from Q&T to quenching & partitioning (Q&P).
This contribution provides as systematic overview of such partitioning effects on the microstructure like the amount and stability of retained austenite as well as on subsequent effects on material properties such as hardness, toughness, strength and ductility. The various effects were investigated on several steel grades and cover also the effect of variation in heat treatment parameters like austenitizing temperature, quench rate, quenching temperature, number, duration and temperature of the tempering, respectively partitioning.
The results clearly show that partitioning dominates over tempering effects at temperatures up to 500°C. Higher quenching temperatures can increase the RA-content similar to higher austenitizing temperatures. Lower quench rates can reduce it due to carbide (nitride) precipitation. Rising tempering (partitioning) temperatures up to 400°C enhances the austenite stabilization. Higher amounts of RA with reduced stability promotes transformation induced plasticity (TRIP), providing the possibility to optimized ductility and tensile strength but reduces yield strength. Increased amounts of RA with sufficient stability increases impact toughness at slightly reduced hardness. Increasing the tempering temperature above 500°C in contrast promotes, after a certain nucleation time, carbide and nitride precipitation, resulting in the elimination of the retained austenite and therefore a typical tempering condition.