Abstract
Ductility dip cracking (DDC) is a detrimental solid-state cracking phenomenon that can occur during welding of copper-nickel (Cu-Ni) alloys used in naval vessels. The presence of these cracks has several deleterious effects, including reduced fatigue life and increased susceptibility to corrosion. The mechanism of DDC remains highly debated and understudied, especially in material systems outside of Ni-Cr-Fe alloys. The predominant mechanisms that have been proposed include: 1. Grain boundary sliding, 2. Precipitate-induced strain, and 3. Impurity element segregation. In the present body of research, thermal-mechanical testing over a wide range of strain rates and temperatures was performed using a Gleeble 3500. Both flow-stress and fracture morphology of wrought 70/30 Cu- Ni are considered. Following fracture, microstructural analyses using both scanning electron microscopy and optical microscopy were conducted to observe and quantify intergranular cracking and fracture surface features. Results show a strong correlation among fracture morphology, ductility, and temperature.