Previous studies have pointed out the need to properly characterize industrial quenching processes to account for the inherent heterogeneities of the process. This study focuses on the identification of thermal boundary conditions of a hollow cylinder quenched by immersion in mineralized oil previously subjected to a predefined air transfer step. The test specimen is instrumented with in-body thermocouples at multiple locations along the radial and azimuthal direction thus mapping the outer and inner surfaces of the hollow cylinder. Based on the experimentally acquired datasets, characteristic points of physical significance during the cooling regimes after immersion are identified to produce time dependent analytical cooling curves. An inverse identification method is applied to estimate heat flux and temperature dependent heat transfer coefficients at locations of interest in both inner bore and outer surfaces. Results demonstrate the non-homogeneous cooling of the specimen during the quenching process before immersion (air transfer) and after immersion in the quenchant, hence confirming the importance of accounting for the influence of the industrial environment. The results are also compared with previous characterization data obtained with a plate probe for the same facilities thus capturing the influence of probe geometry on the identification of thermal boundary conditions.

This content is only available as a PDF.