Abstract
Much more steel must be produced from scrap to meet emissions targets, and utilizing this growing resource is a sound economic strategy. However, the presence of contaminating elements restricts the applications in which end-of-life scrap can replace primary steel. The use of low alloyed quenching and tempering steel grade such as 39MnCrB6-2 to reach high mechanical characteristics (around 1000 MPa) obliges often to apply low tempering temperatures for which tempering embrittlement may be observed. In this paper, it is proposed to reduce the hold time and to increase the temperature during conventional tempering to (1) reduce the embrittlement because of segregation of elements like copper, (2) to change the fracture mechanism with finer martensite sub-grains and (3) to promote θ particles with smaller dimensions but higher density.