In recent years, physical vapor deposition and chemical vapor deposition (CVD) methods have made significant advancements due to the growing demand for surface modification technologies. This study focuses on depositing diamond-like carbon (DLC) as a thin, hard film using plasma-enhanced CVD. DLC possesses properties such as high hardness, low friction, wear resistance, and chemical stability. However, a drawback is low adhesion caused by residual stress and differences in hardness between the film and the substrate material. Therefore, efforts are underway to improve adhesion by introducing a DLC intermediate layer containing metallic elements to reduce residual stress or by applying treatments to harden the substrate material, such as nitriding or carburizing. Active screen plasma nitriding (ASPN) is a nitriding method that eliminates edge effects and electrically insulates the sample during the process. However, during nitriding, deposits can cover the sample and slow down the nitriding rate. To address this, a nitriding method called "direct-current plasma nitriding with screen (S-DCPN)" has been developed. It involves applying a voltage to the sample and screen during ASPN to remove deposits via sputtering action, thereby increasing the nitriding rate. Although the duplex process of ASPN and DLC-coating deposition has been studied, there are limited reports on the duplex process with S-DCPN. This study investigates the effect of intermediate layer composition on mechanical properties by forming a nitrided layer on the surface of SUS304 through S-DCPN treatment, depositing a Si-DLC intermediate layer with varying compositions, and applying a DLC film on the top surface. The results demonstrate that the lower the Si ratio in the Si-DLC intermediate layer, the better the wear resistance. Furthermore, the study reveals that wear resistance and adhesion were improved compared to samples without S-DCPN treatment.

This content is only available as a PDF.