Abstract
Blade curving due to quenching in the Japanese sword has been recognized by swordsmiths through the ages. In the late 1920s, Hattori noted that the sword curving is induced from not only martensitic transformation expansion in the near-edge region but also non-uniform elastic and plastic strains distributed in the section, based on his experimental results using cylindrical specimens. Our research for an updated explanation on the subject prepared Japanese sword (JS) type specimens made of the same steel and process as the Japanese sword, and model JS (MJS) type specimens with the almost same shape as the JS type specimens, which were machined from commercial carbon steel and austenite stainless steel bars. All specimens quenched by a swordsmith using the traditional way showed a usual curved shape with different curvatures. Curving, temperature, hardness, metallic structure and residual stress measurements for the specimens were performed to prepare their future simulation works.