Abstract
Forgings traditionally undergo normalizing or iso-annealing processes to achieve consistent hardness within controlled bands and to improve machinability. The need for these heat treatments stems primarily from the uncontrolled cooling of forgings after trimming operations. This paper demonstrates that similar results can be achieved through controlled cooling rates after trimming, with only minor differences in specific properties. The microstructure obtained through controlled cooling is predominantly coarse-grained, consisting of pearlite and ferrite matrices, contributing to improved machinability. Notably, the controlled cooling process offers potential energy savings of approximately 20 kg of oil per metric ton of net forging weight, with corresponding reductions in CO₂ emissions of up to 250 kg per metric ton. Implementation requires a specially designed cooling tunnel to regulate cooling rates precisely. This paper details the mechanical properties achieved for a carburizing grade steel, discusses necessary refinements to steel specifications, and outlines the process controls required to replace conventional normalizing/iso-annealing with controlled cooling effectively. Additionally, the paper presents the established cycles and cooling rates that produce optimal results in production environments.