1-20 of 987

Search Results for zinc-aluminum alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2005
Fig. 18 Average depth of intergranular corrosion penetration of zinc-aluminum alloys as a function of aluminum concentration in water vapor at 95 °C (205 °F) for ten days. Source: Ref 64 More
Book Chapter

By C. Ramadeva Shastry
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003808
EISBN: 978-1-62708-183-2
... Abstract From the standpoint of corrosion protection of iron and steel, metallic coatings can be classified into two types: noble coatings and sacrificial coatings. This article focuses on hotdipped zinc, aluminum, zinc-aluminum alloy and aluminum-zinc alloy coatings. It discusses the Sendzimir...
Book Chapter

By R. W. Leonard
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001012
EISBN: 978-1-62708-161-0
..., and service life of the host material. The article covers metallic coatings, including zinc, aluminum, zinc-aluminum alloys, tin, and terne; pretreatment or phosphate coatings; and preprimed and painted finishes based on organic coatings. aluminum coatings aluminum-zinc alloy coatings hot dip process...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003781
EISBN: 978-1-62708-177-1
... Abstract This article discusses the specimen preparation techniques for zinc and its alloys and zinc-coated specimens, namely, sectioning, mounting, grinding and polishing, and etching. It describes the characteristics of lead, cadmium, iron, copper, titanium, aluminum, magnesium, and tin...
Image
Published: 01 August 2013
Fig. 1 Electric arc wire spraying to coat a wind turbine tower segment with zinc/aluminum alloy. Courtesy of Muehlhan AG, Hamburg, Germany More
Book Chapter

By X. Gregory Zhang
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003830
EISBN: 978-1-62708-183-2
... Abstract Zinc is one of the most used metals, ranking fourth in worldwide production and consumption behind iron, aluminum, and copper. This article commences with an overview of the applications of zinc that can be divided into six categories: coatings, casting alloys, alloying element...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
...; as an alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed...
Book Chapter

By Robert J. Barnhurst
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001077
EISBN: 978-1-62708-162-7
... intergranular corrosion in zinc-aluminum alloys. Therefore, it is important to maintain the levels of these elements below the limits specified. (c) Except antimony, copper, magnesium, zirconium, and titanium After-Fabrication Galvanizing An aluminum-free grade of zinc that contains up to 1 wt% Pb...
Image
Published: 01 January 1990
Fig. 30 Effect of zinc on aluminum alloy containing 1.5% Cu and 1 and 3% Mg; 1.6 mm (0.064 in.) thick sheet. Alloy with 1% Mg heat treated at 495 °C (920 °F); that with 3% Mg heat treated at 460 °C (860 °F). All specimens quenched in cold water, aged 12 h at 135 °C (275 °F) More
Image
Published: 30 November 2018
Fig. 61 Effect of zinc on aluminum alloy containing 1.5% Cu and 1 and 3% Mg; 1.6 mm (0.064 in.) thick sheet. Alloy with 1% Mg heat treated at 495 °C (920 °F); that with 3% Mg heat treated at 460 °C (860 °F). All specimens quenched in cold water, aged 12 h at 135 °C (275 °F) More
Book Chapter

By Herbert E. Townsend
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001270
EISBN: 978-1-62708-170-2
... considered in this article include metal coatings, such as zinc coatings, and alloy coatings, such as zinc-iron, types 1 and 2 aluminum, Zn-5AI, Zn-55AI, and lead-tin coatings. aluminum coatings continuous hot dip coatings ferrous metals lead-tin alloycoatings microstructure steel sheet surface...
Book Chapter

By Roy E. Beal
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001396
EISBN: 978-1-62708-173-3
... substrate or part. Joint gaps also depend on the reactions of the molten filler metal with the material to be joined. For example, aluminum filler metals (or those with zinc, tin-zinc, or zinc-aluminum alloys) react more quickly with aluminum than a tin-lead solder will with copper and therefore require...
Book Chapter

By Ralph W. Leonard
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003688
EISBN: 978-1-62708-182-5
... °C (1220 °F). Since the continuous sheet-coating process was developed over 50 years ago for the application of zinc ( galvanizing ) onto steel sheet, the process has been employed for the application of other metallic coatings including aluminum and several aluminum/zinc alloys. Each...
Book Chapter

By Kenneth B. Tator
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006027
EISBN: 978-1-62708-172-6
... is the number of waters of hydration attached to the metal phosphate molecule comprising the phosphate layer. Steel, aluminum, copper, and magnesium, and their alloys most commonly are phosphated. Zinc phosphate is by far the most commonly used phosphate solution, and it usually is applied by immersing...
Book Chapter

Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006275
EISBN: 978-1-62708-169-6
... on the mechanical properties of zinc alloy and zinc-aluminum alloy castings. Effect of temperature on the mechanical properties of conventional die casting zinc alloys Table 1 Effect of temperature on the mechanical properties of conventional die casting zinc alloys Alloy designation Temperature...
Book Chapter

Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005140
EISBN: 978-1-62708-186-3
... stamping die materials steel-bonded carbides tool steels zinc-aluminum alloys SHEET METAL is press formed to conform to the contours of a die and punch—largely by bending or moderate stretching, or both—and die material is selected largely by the economics of how many parts that can be produced...
Book Chapter

Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005128
EISBN: 978-1-62708-186-3
... forming are usually made by casting metals such as kirksite, which is a zinc-aluminum alloy, for rapid production of press tooling. These dies can be rapidly produced; are more economical than permanent dies; can be melted and recast; and can be reinforced at selected points of wear by facing with harder...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003832
EISBN: 978-1-62708-183-2
.... Thermal-sprayed coatings of zinc, aluminum, and their alloys have a proven history in service and in tests of providing long-term corrosion protection of steel in various natural environments. This information is accumulated and incorporated into industrial standards and assists the user in the selection...
Book Chapter

By Alexey Sverdlin, Steven Lampman
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
..., cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys. aluminum alloys copper copper alloys heat treatment...
Book Chapter

By Jeganathan Karthikeyan
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005714
EISBN: 978-1-62708-171-9
... Type 440 14 Zinc alloys Zn-20Al 19 Aluminum alloys 1100 21 6061 14 Copper alloys C95800 (Ni-Al bronze) 22 MCrAlY 12 , 14 , 18 Composites/cermets WC-Co 14 Cr 3 C 2 -NiCr 8 , 12 Fe-NdFeB 19 Ti-Al 12 , 18 Al-Cu 18...