Skip Nav Destination
Close Modal
Search Results for
zinc oxide
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 945 Search Results for
zinc oxide
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 August 2013
Fig. 6 Rotatable sputter target produced by spraying zinc oxide coating on a metallic tube. Courtesy of GfE Fremat GmbH
More
Image
Published: 01 January 1986
Fig. 26 Lattice image of zinc oxide formed by combining the transmitted beam and (002) diffracted beam. The interplanar spacing is 0.26 nm. A grain boundary, inclined relative to the incident electron beam, is visible in the upper portion of the photomicrograph. Courtesy of T.J. Headley
More
Image
Published: 01 December 1998
Fig. 20 High-resolution TEM lattice image of zinc oxide formed by combining transmitted and (002) diffracted beams. The interplanar spacing is 0.26 nm. A grain boundary, inclined to the incident beam, is visible in the upper portion of the micrograph. Source: Ref 3
More
Image
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
in Additively Manufactured Biomedical Energy Harvesters
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 2 (a) Zinc-oxide-nanowire-based piezoelectric nanogenerator structure and working principle. (b) Classification of triboelectric nanogenerators (TENGs) into four working modes. Source: Ref 42 . Creative Commons License (CC BY 4.0), https://creativecommons.org/licenses/by/4.0/ . (c
More
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003830
EISBN: 978-1-62708-183-2
... in brass and other alloys, wrought zinc alloys, zinc oxide, and zinc chemicals. It discusses the corrosion and electrochemical behavior of zinc and its alloys in various environments, particularly in atmospheres in which they are most widely used. The article tabulates the corrosion rates of zinc and zinc...
Abstract
Zinc is one of the most used metals, ranking fourth in worldwide production and consumption behind iron, aluminum, and copper. This article commences with an overview of the applications of zinc that can be divided into six categories: coatings, casting alloys, alloying element in brass and other alloys, wrought zinc alloys, zinc oxide, and zinc chemicals. It discusses the corrosion and electrochemical behavior of zinc and its alloys in various environments, particularly in atmospheres in which they are most widely used. The article tabulates the corrosion rates of zinc and zinc coatings immersed in various types of waters, in different solutions in the neutral pH range, and in soils at different geographic locations in the United States. It concludes with information on the forms of corrosion encountered in zinc coatings, including galvanic corrosion, pitting corrosion, and intergranular corrosion.
Image
Published: 01 February 2024
Fig. 39 Effect of oxidative degradation of quench oil containing zinc dialkyl dithiophosphate on cooling curve performance
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003004
EISBN: 978-1-62708-200-6
... dioxide, zinc oxide, zirconium dioxide … Black Chrome ore + pyrolusite + cobalt oxide, chromium, cobalt, iridium compounds, iron oxides, manganese oxides, nickel oxides, pyrolusite, uranium oxide + copper oxide Bismuth salts, carbides, carbon, iridium sesquioxide, lead salts, molybdenum compounds...
Abstract
This article is a comprehensive collection of engineering property data in tabulated form for ceramics and glasses. Data are provided for physical and mechanical properties of ceramic materials and color of ceramics fired under oxidizing and reducing conditions. The article also lists the materials characterization techniques for ceramics and glasses.
Image
Published: 15 June 2020
Fig. 7 SEM images of sintered ceramic structures fabricated by robocasting: (a) bioglass, (b) hydroxyapatite (HA), (c) silicon carbide, (d) silicon nitride, (e) alumina, (f) yttria-stabilized zirconia, (g) zinc oxide, and (h) barium titanate. Adapted from Ref 82 with permission from Wiley
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
..., zinc is available as slabs, ingots, shot, powder, and dust; combined with oxygen, it is available as zinc oxide powder. Slab zinc is produced in three grades ( Table 1 ). Impurity limits are very important when zinc is used for alloying purposes. Exceeding impurity limits can result in poor mechanical...
Abstract
This article provides information on the properties, compositions, designations, and applications of zinc and zinc alloys. It discusses the principal areas of application of zinc: in coatings and anodes for corrosion protection of irons and steels; in zinc casting alloys; as an alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed as well as the three main types of wrought products: flat-rolled products, wire-drawn products, and extruded and forged products. The article also provides a section on the corrosion resistance of zinc and zinc coatings in various atmospheres.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006027
EISBN: 978-1-62708-172-6
... during subsequent processing. All galvanized coatings on steel protect by acting both as a barrier and providing cathodic protection to the underlying steel. A fresh galvanized surface reacts with oxygen to form zinc oxide (ZnO). In the presence of moisture, zinc oxide converts to zinc hydroxide...
Abstract
This article provides a brief discussion on the common types of overlayers that can be used on a metal surface to protect it from corrosion. These overlayers include phosphate, chromate, and chromate-free conversion coatings; hot dip galvanizing; cementitious linings; glass and porcelain enamels; electroplating; thermal spray coatings; and rubber linings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001257
EISBN: 978-1-62708-170-2
... (oz/gal) 20–30 (3–4) Cobalt chloride, g/L (oz/gal) 1–20 (0.1–2.7) Organic additive, g/L (oz/gal) 5–20 (0.66–2.7) pH 5.0–6.0 Temperature, °C (°F) 20–40 (70–100) Anodes Zinc Alkaline baths Zinc oxide, g/L (oz/gal) 10–20 (1.3–2.7) Sodium hydroxide, g/L (oz/gal) 80–150...
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001304
EISBN: 978-1-62708-170-2
..., oxides, etc. Effect on base metal None None when properly inhibited, but caustic alkali will attack aluminum and zinc. None when properly inhibited Very slight surface attack when properly controlled Sometimes slight etch Time required 1 to 15 min 1 to 30 min 1 2 to 3 min 1...
Abstract
This article discusses the classifications, compositions, properties, advantages, disadvantages, limitations, and applications of the most commonly used methods for surface engineering of carbon and alloy steels. These include cleaning methods, finishing methods, conversion coatings, hot-dip coating processes, electrogalvanizing, electroplating, metal cladding, organic coatings, zinc-rich coatings, porcelain enameling, thermal spraying, hardfacing, vapor-deposited coatings, surface modification, and surface hardening via heat treatment.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006049
EISBN: 978-1-62708-172-6
... that, like his Australian patent, were assigned to Di-Met Proprietary Limited ( Ref 6 , 7 ). The first U.S. patent contemplates the production of “a coating on a ferrous metal surface…of a composition comprising finely divided metallic zinc and finely divided lead oxide incorporated into an aqueous solution...
Abstract
The use of zinc in corrosion-protective coatings is due to its higher galvanic activity relative to that of steel. Pure zinc dust provides the best sacrificial protection to steel in a galvanic couple. Zinc-rich coatings can be subcategorized according to the type of binder material used, namely, inorganic and organic zinc-rich coatings. Common inorganic binders such as post-cured water-based alkali metal silicates, self-cured water-based alkali metal silicates, and self-cured solvent-based alkyl silicates, are reviewed. The article also compares inorganic and organic zinc-rich coatings, and discusses the concerns regarding zinc-rich coatings.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001012
EISBN: 978-1-62708-161-0
... exposure tests have shown that zinc dust-zinc oxide paints (finely powdered zinc metallic and zinc oxide pigment in an oil or alkyd base) adhere best to galvanized steel surfaces under most conditions. Zinc dust-zinc oxide primers can be used over new or weathered galvanized steel and can be top coated...
Abstract
Steel sheet is often coated in coil form prior to fabrication to save time, reduce production costs, and streamline operations. This article examines the most common precoating methods and provides a metallurgical understanding of how they impact the manufacturability, performance, and service life of the host material. The article covers metallic coatings, including zinc, aluminum, zinc-aluminum alloys, tin, and terne; pretreatment or phosphate coatings; and preprimed and painted finishes based on organic coatings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001272
EISBN: 978-1-62708-170-2
... rate of speed. Zinc ammonium chloride is generally used to provide a flux blanket on the molten zinc bath. There are several procedures for preparing the flux blanket. One generic method consists of mixing ammonium chloride (sal ammoniac) and zinc oxide to form the monoamine of zinc chloride...
Abstract
This article commences with a description of the applications of galvanized coatings and provides information on metallurgical characteristics, such as coating thickness and alloying elements. It examines the effect of galvanizing process on the mechanical properties of steels and briefly describes the cleaning procedures of iron and steel pieces, before galvanizing. The article discusses the different types of conventional batch galvanizing practices. Information on the galvanizing of silicon-killed steels is also presented. The article concludes with helpful information on batch galvanizing equipment and galvanizing post treatments.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001255
EISBN: 978-1-62708-170-2
... of the resulting composition of the plated alloy. The zinc can form a complex with either cyanide or hydroxide, depending on the hydroxide content of the solution. Cyanide is also necessary for solubility of the anodes. While zinc is usually added as cyanide, a very pure grade of zinc oxide can also be used...
Abstract
Copper alloys are widely used as electroplated coatings. They can also be used with practically any substrate material that is suitable for electroplating. This article focuses on the solution composition and operating conditions for brass and bronze plating solutions. It describes the decorative and engineering applications of brass and bronze plating. The article also provides information on the treatment of waste water from brass and bronze plating operations.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006051
EISBN: 978-1-62708-172-6
..., latex coatings, alkyds and other resins, which cure by oxidation, moisture-curing polyurethanes and inorganic zinc primers, and powder coatings. The article concludes with a discussion on the functions of the primer, intermediate coat, and topcoat in coating systems. chemical composition epoxy...
Abstract
A coating can be defined as a substance spread over a surface to provide protection or to serve decorative purposes. This article discusses two industrial coating components, namely, nonvolatile components such as the resin or binder, pigments, and any additives that may be incorporated into the formulation; and volatile components such as solvents, or water in emulsions and their composition. It provides general information on volatile organic compounds. The article describes the film-forming mechanisms of various coating types, namely, lacquers, chemically converting coatings, latex coatings, alkyds and other resins, which cure by oxidation, moisture-curing polyurethanes and inorganic zinc primers, and powder coatings. The article concludes with a discussion on the functions of the primer, intermediate coat, and topcoat in coating systems.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001118
EISBN: 978-1-62708-162-7
... on the recycling of nonferrous alloys, namely, aluminum, copper, magnesium, tin, lead, zinc, and titanium, providing details on the sources, consumption and classification of scrap, and the technological trends and developments in recycling. aluminum recycling copper recycling lead recycling magnesium...
Abstract
Many nonferrous metals, including aluminum, nickel, copper, and others, are among the few materials that do not degrade or lose their chemical or physical properties in the recycling process. As a result, these metals can be recycled an infinite number of times. This article focuses on the recycling of nonferrous alloys, namely, aluminum, copper, magnesium, tin, lead, zinc, and titanium, providing details on the sources, consumption and classification of scrap, and the technological trends and developments in recycling.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005307
EISBN: 978-1-62708-187-0
... be used in conventional hinged steel belt frames. Inclusions in Zinc Alloys In the zinc foundry and die casting alloys containing aluminum, nonmetallic oxide inclusions are usually less important than intermetallic inclusions. Iron-zinc and iron-aluminum intermetallic compounds may also be present...
Abstract
This article describes the control of alloy composition and impurity levels in die casting of zinc alloys based on agitation, use of foundry scrap, and melt temperature and fluxing. It reviews the process considerations for the melt processing of the zinc alloys. The process considerations include the usage of furnaces and launder system, scrap return, inclusions in zinc alloys, fluxing of zinc alloys, and galvanizing fluxes. The article discusses the materials and lubricant selection, casting and die temperature control, and trimming process used in hot chamber die casting for zinc alloys. It also reviews other casting processes for zinc alloys, such as sand casting, permanent mold casting, plaster mold casting, squeeze casting, and semisolid casting.
1