1-20 of 339 Search Results for

zinc chemicals

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
... alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003830
EISBN: 978-1-62708-183-2
... brass and other alloys, wrought zinc alloys, zinc oxide, and zinc chemicals. It discusses the corrosion and electrochemical behavior of zinc and its alloys in various environments, particularly in atmospheres in which they are most widely used. The article tabulates the corrosion rates of zinc and zinc...
Book Chapter

By Nabil Zaki
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001257
EISBN: 978-1-62708-170-2
... Abstract This article provides information on the compositions of alkaline and acid baths and process parameters for zinc-iron, zinc-cobalt, zinc-nickel, and tin-zinc plating. acid baths alkaline baths corrosion protection process parameters tin-zinc plating zinc alloy plating zinc...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005333
EISBN: 978-1-62708-187-0
... Abstract Die castings is the process most often used for shaping zinc alloys. This article tabulates the compositions of zinc casting alloys and comparison of typical mechanical properties of zinc casting alloys. It discusses additions of alloys to the zinc, including aluminum, magnesium...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003819
EISBN: 978-1-62708-183-2
... steel, aluminum, zinc, cadmium, and magnesium and therefore will accelerate the corrosion of these metals. With titanium, copper, silver, and passivated stainless steels, lead is the anode of the cell and suffers accelerated attack. In either case, the rate of corrosion is governed by the difference in...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006049
EISBN: 978-1-62708-172-6
... up the porosities within the coating to prevent water from reaching the underlying steel. However, in some environments, such as those of high acidity or alkalinity, the zinc may be attacked by chemicals, and water-insoluble corrosion products will not be produced. Similarly, in high-chloride...
Book Chapter

By A. Sato
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001248
EISBN: 978-1-62708-170-2
..., % Zinc 99.9930 Lead 0.0031 Cadmium 0.0017 Iron 0.0010 Copper Trace Zinc anodes dissolve chemically as well as electrochemically in cyanide baths, so effective anode efficiency will be above 100%. This causes a buildup in zinc metal content, because cathode efficiencies are usually...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001315
EISBN: 978-1-62708-170-2
... available. The alkaline cleaners must have controlled pH and contain inhibitors to prevent attack of the zinc. Table 1 Alkaline cleaning solutions for zinc die castings Chemical Soak cleaning Power-spray cleaning Anodic cleaning Sodium hydroxide, g/L … 1.5 0.5–2 (a) Sodium...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005307
EISBN: 978-1-62708-187-0
... rabbling or raking the flux into intimate contact with the dross phase, serves to raise the local temperature, increase fluidity, decrease the surface tension of the oxide skin, and chemically reduce ZnO. Proper fluxing procedures will permit more than half of the entrapped zinc to be recovered, yielding...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001310
EISBN: 978-1-62708-170-2
..., extruded Acid pickled, phosphate treated, powder coated (polyester) Missile exteriors, wrought System A: dichromate, vinyl butyrate zinc chromate wash primer, baked phenolic epoxy varnish, 2 coats, enamel, 2 coats System B: chrome pickle or anodizing depending on alloy, phenolic epoxy paint, 2...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006044
EISBN: 978-1-62708-172-6
... stability, freeze-thaw stability, and shear stability. Stability toward multivalent ions is also affected and is important for coatings, such as anticorrosive primers, that rely on slightly soluble inhibitive pigments (e.g., zinc phosphate) that generate multivalent ions in the wet state. When good...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001223
EISBN: 978-1-62708-170-2
...; finishing Flat and rotating baskets; conveyorized Automotive die castings Zinc-base 910 2000 Light oils, grease; tapping lubricants; chips Assembly Flat and rotating baskets; conveyorized Electron-tube components Steel 910 2000 Light oils Dry hydrogen fire Conveyorized unit Tractor...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006041
EISBN: 978-1-62708-172-6
... The FEVE-based coatings are used to aesthetically improve exterior structures and to protect various substrates from degradation. In structural steel protection, FEVE-based coatings serve as the topcoat in a three-coat system that uses a zinc-rich primer and an epoxy intermediate coat preceding it...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001276
EISBN: 978-1-62708-170-2
... rusting, which can be accelerated by the presence of chloride salts, oxides of sulfur, and other electrolytes that enter into or modify the chemical reactions involved. The composition and metallurgical characteristics of the alloy also influence the extent and rate of rusting, and they frequently...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005926
EISBN: 978-1-62708-166-5
... scaling when metals are exposed to elevated temperatures remains an important task of the furnace atmosphere. In a more sophisticated view, the atmosphere within the furnace chamber is a full-fledged partner in achieving the chemical reactions that occur during heat treating. Properly applied and...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003217
EISBN: 978-1-62708-199-3
... Abstract There are various coating techniques in practice to prevent the deterioration of steels. This article focuses on dip, barrier, and chemical conversion coatings and describes hot-dip processes for coating carbon steels with zinc, aluminum, lead-tin, and other alloys. It describes...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003221
EISBN: 978-1-62708-199-3
... Abstract This article discusses surface engineering of nonferrous metals including aluminum and aluminum alloys, copper and copper alloys, magnesium alloys, nickel and nickel alloys, titanium and titanium alloys, zirconium and hafnium, zinc alloys, and refractory metals and alloys. It describes...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003083
EISBN: 978-1-62708-199-3
... Uuu Uranium U Vanadium V Xenon Xe Ytterbium Yb Yttrium Y Zinc Zn Zirconium Zr (a) Symbol based on the Latin word stibium. (b) Symbol based on the Latin word cuprum. (c) Symbol based on the Latin word aurum. (d) Symbol based on the Latin word ferrum...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003808
EISBN: 978-1-62708-183-2
...-Norteman process, an in-line furnace is not used. The sheet is chemically cleaned by alkaline degreasing and acid pickling. After cleaning, the sheet is coated with a film of zinc ammonium chloride, dried, and preheated to less than 260 °C (500 °F) before entering the galvanizing bath. Zinc is an...