1-20 of 1117 Search Results for

zinc alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003830
EISBN: 978-1-62708-183-2
... Abstract Zinc is one of the most used metals, ranking fourth in worldwide production and consumption behind iron, aluminum, and copper. This article commences with an overview of the applications of zinc that can be divided into six categories: coatings, casting alloys, alloying element...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001077
EISBN: 978-1-62708-162-7
... Abstract This article describes the zinc and zinc alloys for decorative and functional applications. It focuses on the types of zinc coatings, namely, hot dip galvanizing, electrogalvanizing, metallizing, and mechanical galvanizing. The article covers the uses of zinc alloy castings, including...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
... Abstract This article provides information on the properties, compositions, designations, and applications of zinc and zinc alloys. It discusses the principal areas of application of zinc: in coatings and anodes for corrosion protection of irons and steels; in zinc casting alloys...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005307
EISBN: 978-1-62708-187-0
... Abstract This article describes the control of alloy composition and impurity levels in die casting of zinc alloys based on agitation, use of foundry scrap, and melt temperature and fluxing. It reviews the process considerations for the melt processing of the zinc alloys. The process...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001315
EISBN: 978-1-62708-170-2
... Abstract Zinc and zinc alloys require surface engineering prior to coating or use to improve adhesion and corrosion resistance. Die-cast zinc parts, in addition, must be trimmed and finished to remove flash and parting lines. This article covers zinc cleaning procedures as well as coating...
Image
Published: 01 January 1990
Fig. 21 Variation of properties with zinc content for wrought copper-zinc alloys More
Image
Published: 01 January 1990
Fig. 1 Effect of aging time on the tensile strengths of five zinc alloys. Aging temperature, 100 °C (212 °F). (a) 0.76 mm (0.030 in.) casting wall thickness. (b) 1.52 mm (0.060 in.) casting wall thickness. (c) 2.54 mm (0.100 in.) casting wall thickness. Source: Noranda Technology Centre More
Image
Published: 01 June 2016
Fig. 5 Effect of aging time on tensile strength of zinc alloys. Aging temperature: 100 °C (212 °F). (a) 0.76 mm (0.030 in.), (b) 1.52 mm (0.060 in.), and (c) 2.54 mm (0.100 in.) casting wall thicknesses. Source: Noranda Technology Center More
Image
Published: 01 December 1998
Fig. 7 Debye-Scherrer films identifying phases in copper-zinc alloys of various compositions. Source: Ref 2 More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003781
EISBN: 978-1-62708-177-1
... Abstract This article discusses the specimen preparation techniques for zinc and its alloys and zinc-coated specimens, namely, sectioning, mounting, grinding and polishing, and etching. It describes the characteristics of lead, cadmium, iron, copper, titanium, aluminum, magnesium, and tin...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005333
EISBN: 978-1-62708-187-0
... Abstract Die casting is the process most often used for shaping zinc alloys. This article tabulates the compositions of zinc casting alloys and comparison of typical mechanical properties of zinc casting alloys. It discusses additions of alloys to the zinc, including aluminum, magnesium, copper...
Book Chapter

By Nabil Zaki
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001257
EISBN: 978-1-62708-170-2
... Abstract This article provides information on the compositions of alkaline and acid baths and process parameters for zinc-iron, zinc-cobalt, zinc-nickel, and tin-zinc plating. acid baths alkaline baths corrosion protection process parameters tin-zinc plating zinc alloy plating zinc...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002187
EISBN: 978-1-62708-188-7
... Abstract This article discusses various machining techniques of zinc alloy die castings. These include turning, boring, drilling, reaming, tapping, die threading, milling, and sawing. In addition, the article describes the factors that influence machinability of the zinc alloy die castings...
Image
Published: 01 December 2008
Fig. 2 Two margash-form zinc alloy ingots for feeding die casting alloy to the holding furnace. Note the hole that accepts a hook that slowly lowers the metal into the furnace. Source: Courtesy of Allied Metal Company, Chicago, IL More
Image
Published: 01 January 2002
Fig. 11 Die-cast zinc alloy nuts from a water tap. (a) Nut for the cold-water tap that failed by SCC. (b) Mating nut for the hot-water top that shows only isolated areas of corrosion. (c) Unetched section showing metal in the cold-water tap after corrosion testing. 600× More
Image
Published: 01 January 1990
Fig. 2 Elongation of zinc alloy No. 3 at various combinations of stress and temperature for a service life of 3 × 10 3 h. Source: AM&S Europe Ltd. More
Image
Published: 01 January 1990
Fig. 3 Elongation of pressure die cast zinc alloy ZA-8 at various combinations of stress and temperature for a service life of 3 × 10 3 h. Source: AM&S Europe Ltd. More
Image
Published: 01 January 1990
Fig. 4 Elongation of pressure die cast zinc alloy ZA-27 at various combinations of stress and temperature for a service life of 3 × 10 3 h. Source: AM&S Europe Ltd. More
Image
Published: 01 January 1990
Fig. 5 Tensile creep properties of zinc alloy ILZRO 16 at various temperatures. (0.1%/10 4 h) = (1%/10 5 h). Source: Engineering Properties of Zinc Alloys, International Lead-Zinc Research Organization, 1989 More
Image
Published: 01 June 2016
Fig. 7 Age hardening of a binary magnesium-zinc alloy (Mg-5Zn). The samples were solution treated at 315 °C (600 °F) for 1 h, then water quenched before aging. Adapted from Ref 11 More