Skip Nav Destination
Close Modal
Search Results for
zinc alloy die castings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 416 Search Results for
zinc alloy die castings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002187
EISBN: 978-1-62708-188-7
... Abstract This article discusses various machining techniques of zinc alloy die castings. These include turning, boring, drilling, reaming, tapping, die threading, milling, and sawing. In addition, the article describes the factors that influence machinability of the zinc alloy die castings...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005333
EISBN: 978-1-62708-187-0
... Abstract Die casting is the process most often used for shaping zinc alloys. This article tabulates the compositions of zinc casting alloys and comparison of typical mechanical properties of zinc casting alloys. It discusses additions of alloys to the zinc, including aluminum, magnesium, copper...
Abstract
Die casting is the process most often used for shaping zinc alloys. This article tabulates the compositions of zinc casting alloys and comparison of typical mechanical properties of zinc casting alloys. It discusses additions of alloys to the zinc, including aluminum, magnesium, copper, and iron. The article illustrates a characteristic five-layer microstructure of zinc alloy casings. It discusses the various methods of finishing of zinc alloy die castings, including chromium plating, polishing, painting, and electropainting. The article describes the casting of inserts and their uses in the zinc. It concludes with information on the applications of zinc die castings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001315
EISBN: 978-1-62708-170-2
... Abstract Zinc and zinc alloys require surface engineering prior to coating or use to improve adhesion and corrosion resistance. Die-cast zinc parts, in addition, must be trimmed and finished to remove flash and parting lines. This article covers zinc cleaning procedures as well as coating...
Abstract
Zinc and zinc alloys require surface engineering prior to coating or use to improve adhesion and corrosion resistance. Die-cast zinc parts, in addition, must be trimmed and finished to remove flash and parting lines. This article covers zinc cleaning procedures as well as coating and finishing processes. It explains how to remove parting lines and presents several mechanical finishing methods, including surface polishing, brushing, controlled shot peening, and buffing. It also provides information on solvent cleaning, emulsion cleaning, aqueous detergent or alkaline cleaning), electrocleaning, acid dipping, and zinc conversion coating treatments.
Image
Published: 01 December 2008
Fig. 2 Two margash-form zinc alloy ingots for feeding die casting alloy to the holding furnace. Note the hole that accepts a hook that slowly lowers the metal into the furnace. Source: Courtesy of Allied Metal Company, Chicago, IL
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
...; as an alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed...
Abstract
This article provides information on the properties, compositions, designations, and applications of zinc and zinc alloys. It discusses the principal areas of application of zinc: in coatings and anodes for corrosion protection of irons and steels; in zinc casting alloys; as an alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed as well as the three main types of wrought products: flat-rolled products, wire-drawn products, and extruded and forged products. The article also provides a section on the corrosion resistance of zinc and zinc coatings in various atmospheres.
Image
Published: 01 January 2002
Fig. 11 Die-cast zinc alloy nuts from a water tap. (a) Nut for the cold-water tap that failed by SCC. (b) Mating nut for the hot-water top that shows only isolated areas of corrosion. (c) Unetched section showing metal in the cold-water tap after corrosion testing. 600×
More
Image
Published: 01 December 2004
Fig. 24 Alloy 3 (ASTM AG40A, Zn-4.1Al-0.035Mg). (a) As die cast. Structure is zinc solid solution surrounded by eutectic. (b) Same as (a) except aged 10 days at 95 °C (205 °F). Aging increased the amount of precipitation in the zinc solid solution. Both etched in etchant 2, Table 1 . 1000×
More
Image
Published: 30 August 2021
Fig. 11 Die-cast zinc alloy nuts from a water tap. (a) Nut for the cold-water tap that failed by stress-corrosion cracking. (b) Mating nut for the hot-water top that shows only isolated areas of corrosion. (c) Unetched section showing metal in the cold-water tap after corrosion testing
More
Image
Published: 01 January 1990
Fig. 3 Elongation of pressure die cast zinc alloy ZA-8 at various combinations of stress and temperature for a service life of 3 × 10 3 h. Source: AM&S Europe Ltd.
More
Image
Published: 01 January 1990
Fig. 4 Elongation of pressure die cast zinc alloy ZA-27 at various combinations of stress and temperature for a service life of 3 × 10 3 h. Source: AM&S Europe Ltd.
More
Image
in Effects of Composition, Processing, and Structure on Properties of Nonferrous Alloys
> Materials Selection and Design
Published: 01 January 1997
Fig. 16 Photomicrographs of zinc die-casting alloy No. 5 (UNS Z35531), Zn-4Al-1Cu-0.05Mg, showing (a) the zinc solid solution surrounded by eutectic in the as-die-cast microstructure and (b) the precipitation of aluminum-rich precipitates in the zinc phase after aging 10 days at 95 °C (205 °F
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005267
EISBN: 978-1-62708-187-0
... cast. These casting metals are processed at relatively low temperatures and include zinc alloys with casting temperatures between 400 and 450 °C (750 and 840 °F). Also, lead and tin alloys, together with other systems having casting temperatures below 250 °C (480 °F), are routinely hot chamber die cast...
Abstract
This article describes the melting process of casting metals used in hot chamber die casting. It discusses the design and capabilities of injection components, such as gooseneck, plunger, and cylinder. The article reviews the distinctions between hot and cold chamber processes. An example of a typical runner, gate and overflow configuration for faucet fixture casting is shown. Temperature control for die casting is also discussed. The article explains some ejection and post-processing techniques used for the hot chamber die casting: robotics, recycling, and fluxing.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001077
EISBN: 978-1-62708-162-7
... pressure die castings, and gravity castings. It details the wrought products of zinc and zinc alloys, including flat-rolled products, wire-drawn products, extruded products, and forged products. The article also describes various properties of zinc alloys, including mechanical, thermal, electrical...
Abstract
This article describes the zinc and zinc alloys for decorative and functional applications. It focuses on the types of zinc coatings, namely, hot dip galvanizing, electrogalvanizing, metallizing, and mechanical galvanizing. The article covers the uses of zinc alloy castings, including pressure die castings, and gravity castings. It details the wrought products of zinc and zinc alloys, including flat-rolled products, wire-drawn products, extruded products, and forged products. The article also describes various properties of zinc alloys, including mechanical, thermal, electrical, chemical, and magnetic properties. The listing for each alloy includes chemical compositions, relevant specifications, mass characteristics, and fabrication characteristics.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005307
EISBN: 978-1-62708-187-0
... Abstract This article describes the control of alloy composition and impurity levels in die casting of zinc alloys based on agitation, use of foundry scrap, and melt temperature and fluxing. It reviews the process considerations for the melt processing of the zinc alloys. The process...
Abstract
This article describes the control of alloy composition and impurity levels in die casting of zinc alloys based on agitation, use of foundry scrap, and melt temperature and fluxing. It reviews the process considerations for the melt processing of the zinc alloys. The process considerations include the usage of furnaces and launder system, scrap return, inclusions in zinc alloys, fluxing of zinc alloys, and galvanizing fluxes. The article discusses the materials and lubricant selection, casting and die temperature control, and trimming process used in hot chamber die casting for zinc alloys. It also reviews other casting processes for zinc alloys, such as sand casting, permanent mold casting, plaster mold casting, squeeze casting, and semisolid casting.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005140
EISBN: 978-1-62708-186-3
... Abstract This article reviews the production variables that influence the selection of various stamping die materials: ferrous, nonferrous, and plastic die materials. It provides a discussion on the specific types of die materials for tool steels, cast irons, plastics, aluminum, bronze, zinc...
Abstract
This article reviews the production variables that influence the selection of various stamping die materials: ferrous, nonferrous, and plastic die materials. It provides a discussion on the specific types of die materials for tool steels, cast irons, plastics, aluminum, bronze, zinc-aluminum, and steel-bonded carbides. The article describes factors to be considered during the selection of materials for press-forming dies.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... and mechanical properties similar to the alloys they replace. Zinc Alloys DIE CASTING is the process most often used for shaping zinc alloys although gravity casting (sand and permanent mold) is also employed. Some zinc castings have also been produced by the semisolid casting process. Types of Zinc...
Abstract
Aluminum alloys are primarily used for nonferrous castings because of their light weight and corrosion resistance. This article discusses at length the melting and metal treatment, structure control, sand casting, permanent mold casting, and die casting of aluminum alloys. It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003781
EISBN: 978-1-62708-177-1
...%, castings containing as little as 0.10% Al display the eutectic structure in interdendritic areas. At the normal aluminum concentration in standard zinc die-casting alloys (4.0% Al), the rate of attack by the melt on iron is sufficiently low to permit die casting in hot-chamber machines in which...
Abstract
This article discusses the specimen preparation techniques for zinc and its alloys and zinc-coated specimens, namely, sectioning, mounting, grinding and polishing, and etching. It describes the characteristics of lead, cadmium, iron, copper, titanium, aluminum, magnesium, and tin, which are present in the microstructure of zinc alloys. The article also provides information on microexamination that helps to determine the dendrite arm spacing, as well as the grain size, grain boundaries, and grain counts.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005334
EISBN: 978-1-62708-187-0
... Abstract This article focuses on the variety of alloys, furnaces, and associated melting equipment as well as the casting methods available for manufacturing magnesium castings. These methods include sand casting, permanent mold casting, die casting, thixomolding, and direct chill casting...
Abstract
This article focuses on the variety of alloys, furnaces, and associated melting equipment as well as the casting methods available for manufacturing magnesium castings. These methods include sand casting, permanent mold casting, die casting, thixomolding, and direct chill casting. The article discusses the flux process and fluxless process for the melting and pouring of magnesium alloys. It describes the advantages and disadvantages of green sand molding and tabulates typical compositions and properties of magnesium molding sands. The article provides information on the machining characteristics of magnesium and the applications of magnesium alloys.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005306
EISBN: 978-1-62708-187-0
... of copper alloys, 10% Magnesium high-pressure die casting, 3% The articles in this Section, “Casting of Non-ferrous Alloys,” describe the shape casting of aluminum, copper, and zinc alloys along with articles on the continuous casting of aluminum and copper. Casting of magnesium alloys is detailed...
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005128
EISBN: 978-1-62708-186-3
... are cast from zinc alloy (Zn-4Al-3.5Cu-0.04 Mg), aluminum alloy, beryllium copper, ductile iron, or steel. The wide use of zinc alloy as a die material stems from the ease of casting it close to the final shape desired. Its low melting point (380.5 °C, or 717 °F) is also advantageous. All dies, regardless...
Abstract
This article discusses the advantages and limitations of drop hammer forming and presents the key factors for determining a process plan. It describes the characteristics of hammers and presents information on tool materials. It explains the use of lubricants and preparation of blanks for forming. The article also details the drop hammer forming process of steels, aluminum alloys, magnesium alloys, and titanium alloys.
1