1-20 of 158 Search Results for

zinc alloy die castings

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005333
EISBN: 978-1-62708-187-0
... Abstract Die castings is the process most often used for shaping zinc alloys. This article tabulates the compositions of zinc casting alloys and comparison of typical mechanical properties of zinc casting alloys. It discusses additions of alloys to the zinc, including aluminum, magnesium...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
... die casting iron lead low-pressure die casting manganese mechanical properties nickel permanent mold casting phosphorus sand casting selenium silicon tin zinc alloying additions precision casting COPPER and its alloys were the first metals discovered by mankind some 60 centuries ago...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
... alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005267
EISBN: 978-1-62708-187-0
... relatively low temperatures and include zinc alloys with casting temperatures between 400 and 450 °C (750 and 840 °F). Also, lead and tin alloys, together with other systems having casting temperatures below 250 °C (480 °F), are routinely hot chamber die cast. The injection end of a hot chamber die casting...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005292
EISBN: 978-1-62708-187-0
... geometry must allow removal from the die cavity. Die casting is generally limited to metals with low melting points. Aluminum is the most commonly used, followed by zinc, magnesium, copper, tin, and lead. Zinc, tin, and lead alloys are considered to be low-melting-point alloys, while aluminum and...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005186
EISBN: 978-1-62708-187-0
... of the alloy and the temperature and composition of the mold. Usually, lead and zinc alloy castings are produced by slush casting. The ss is limited to the production of hollow castings and was used to produce lamp bases ( Ref 6 ). Manually operated die casting machines were patented as early as...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005307
EISBN: 978-1-62708-187-0
... Abstract This article describes the control of alloy composition and impurity levels in die casting of zinc alloys based on agitation, use of foundry scrap, and melt temperature and fluxing. It reviews the process considerations for the melt processing of the zinc alloys. The process...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003830
EISBN: 978-1-62708-183-2
... alloys 96Zn-4Al, zinc die-casting alloy Zn-Cu, with up to 45% Zn, are brass alloys Zn-Fe, includes the phases making up galvanized coatings Zn-Pb, plays an important role in some pyrometallurgical extraction processes Ternary and quaternary systems involving these alloys, with additions...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003134
EISBN: 978-1-62708-199-3
... surface cracking, porosity problems, and the formation of internal cavities, small amounts of alloying elements (such as beryllium, silicon, nickel, tin, zinc, and chromium) are used to improve the casting characteristics of copper. Larger amounts of alloying elements are added for property improvement...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
... over the metal in critical applications. Indium is added, together with zinc, in the casting of sacrificial anodes. Indium helps to disrupt the normally tough, coherent aluminum oxide surface coating typical of aluminum alloys and hence enhances its ability to corrode sacrificially. Iron...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006264
EISBN: 978-1-62708-169-6
... automotive components: engine blocks, cylinder heads, manifolds, master cylinders, oil pans, valve covers, and pistons. These applications do not usually require high elongation, so secondary alloys are often employed. These contain significant quantities of iron, manganese, and zinc as well as lesser...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001315
EISBN: 978-1-62708-170-2
... Abstract Zinc and zinc alloys require surface engineering prior to coating or use to improve adhesion and corrosion resistance. Die-cast zinc parts, in addition, must be trimmed and finished to remove flash and parting lines. This article covers zinc cleaning procedures as well as coating and...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005277
EISBN: 978-1-62708-187-0
... tested on all cast materials. Some rules have obvious implications and are applicable to all types of metals and alloys, including those based on aluminum, zinc, magnesium, cast irons, steels, air- and vacuum-cast nickel and cobalt, and titanium. Nevertheless, although all materials will probably benefit...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005257
EISBN: 978-1-62708-187-0
... casting of zinc, tin, and other alloys with low melting points. It is also used in conjunction with nonmetallic materials such as glass and plastics. A more advanced materials application is the combustion synthesis of functionally graded materials. This method, also referred to as just...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005266
EISBN: 978-1-62708-187-0
... injection. The process varieties have many features in common with regard to die mechanical design, thermal control, and actuation. Four principal alloy families are commonly die cast: aluminum-, zinc-, magnesium-, and copper-base alloys. Lead, tin, and, to a lesser extent, ferrous alloys can also be die...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005318
EISBN: 978-1-62708-187-0
... to Table 1 . Table 1 Steel and hardness recommendations for die casting dies and associated tooling Die components Fig. 1 part Alloy to be cast Tin, lead, zinc Aluminum, magnesium Copper, brass Cavity inserts 1 P20 at 290–330 HB (a) H13 at 42–48 HRC DIN 1.2367 at 38...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... C93700 1095–1230 2000–2250 1010–1150 1850–2100 C93800 1095–1230 2000–2250 1040–1150 1900–2100 C94300 1095–1205 2000–2200 1010–1095 1850–2000 DIE CASTING is the process most often used for shaping zinc alloys although gravity casting (sand and permanent mold) is also...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005287
EISBN: 978-1-62708-187-0
... operation. In the hot chamber process, the shot chamber and piston are immersed in molten metal. Metals such as magnesium and zinc that do not aggressively attack the materials of construction can be efficiently cast by this method, with production rate advantages. Despite intensive efforts to develop hot...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003975
EISBN: 978-1-62708-185-6
... factors that affect die life and safety precautions to be considered during die construction. cast dies die inserts fabrication hammers hardenability heat treatment horizontal forging machines hot forging hot-work tool steels impression dies mechanical fatigue plastic deformation...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006254
EISBN: 978-1-62708-169-6
... alloys and the relationship between hardness and mechanical properties of the alloys. The article discusses the effects of elements such as aluminum, zinc, manganese, rare earths, and yttrium, on precipitation hardening. It describes the types of heat treatment for magnesium alloys, including annealing...