Skip Nav Destination
Close Modal
Search Results for
wrought titanium
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 620 Search Results for
wrought titanium
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001081
EISBN: 978-1-62708-162-7
... Abstract This article discusses the wrought product forms of titanium and titanium-base alloys, which include forgings and the typical mill products with tabulations for various specifications, and compares specifications for pure titanium, titanium alloys for mechanical, physical properties...
Abstract
This article discusses the wrought product forms of titanium and titanium-base alloys, which include forgings and the typical mill products with tabulations for various specifications, and compares specifications for pure titanium, titanium alloys for mechanical, physical properties and chemical properties, including chemical composition, corrosion resistance, and chemical reactivity. The article discusses the effects of alloying elements in titanium alloys, and describes the classes of titanium alloys, namely, alpha alloys, alpha-beta alloys, and beta alloys. It also describes the typical applications of various titanium-base materials, and explains the crystal structure, effect of impurities, and microstructural constituents of titanium alloys. The article provides a brief description on the processing of wrought titanium alloys, including primary fabrication in which ingots are converted into general mill products and secondary fabrication (forging, extrusion, forming, machining, chemical milling and joining) of finished shapes from mill products and the heat treatment of titanium alloys.
Image
Published: 01 January 2005
Fig. 3 Wrought gamma titanium products. (a) Compressor blades. (b) Subscale isothermally forged disk. (a) and (b) Source: D.U. Furrer, Ladish Company. (c) Large, conventionally (pack) rolled sheet. Source: Battelle Memorial Institute, Air Force Research Laboratory
More
Image
Published: 01 December 1998
Fig. 14 Effect of aluminum + titanium content on strength of wrought and cast nickel-base superalloys at 870 °C (1600 °F)
More
Image
Published: 01 December 2004
Fig. 16 An equiaxed alpha microstructure of wrought commercially pure titanium wire etched with a hydrofluoric acid, nitric acid, and water solution ( Table 3 )
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003141
EISBN: 978-1-62708-199-3
... of mechanical properties that generally does not exist in bar or billet. Tensile strength, creep resistance, fatigue strength, and toughness all may be better in forgings than in bar or other forms. Forging is a common method of producing wrought titanium alloy articles. Forging sequences and subsequent...
Abstract
Titanium metal passes through three major steps during processing from ore to finished product: reduction of titanium ore to sponge (porous form), melting of sponge and scrap to form ingot, and remelting and casting into finished shape. This article describes primary fabrication, including all operations that convert ingot into general mill products, such as billet, bar, plate, sheet, strip, tube, and wire. The section on secondary fabrication describes processes such as die forging, extrusion, hot and cold forming, machining, chemical milling, and joining. The article presents a short note on powder metallurgy products of titanium. Casting processes and properties are covered in the final section.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
... alloys and presents a list of titanium-base biomaterials. Titanium components are produced in wrought, cast, and powder metallurgy (PM) form. The article describes forging, casting, and heat treating of titanium alloys for producing titanium components. Typical mechanical properties of titanium...
Abstract
Titanium and its alloys have been used extensively in a wide variety of implant applications, such as artificial heart pumps, pacemaker cases, heart valve parts, and load-bearing bone or hip joint replacements or bone splints. This article discusses the properties of titanium and its alloys and presents a list of titanium-base biomaterials. Titanium components are produced in wrought, cast, and powder metallurgy (PM) form. The article describes forging, casting, and heat treating of titanium alloys for producing titanium components. Typical mechanical properties of titanium biomedical implant alloys are listed in a tabular form. The article presents an overview of the surface-modification methods for titanium and its alloys implants. It concludes with a section on biocompatibility and in vivo corrosion of titanium alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005337
EISBN: 978-1-62708-187-0
...) 180 400 1145 diam × 760 45 diam × 30 1015 diam × 635 40 diam × 25 Billet Always Properties Comparable to Wrought The term castings often connotes products with properties generally inferior to wrought products. This is not true with titanium cast parts. Mechanical properties...
Abstract
The combination of high strength-to-weight ratio, excellent mechanical properties, and corrosion resistance makes titanium the best material choice for many critical applications. This article begins with a description of the historical perspective of titanium casting technology. It discusses the types of molding methods, such as rammed graphite molding and lost-wax investment molding. The article provides information on the casting design, melting, postcasting, and pouring practices. It describes the microstructure and mechanical properties of Ti-6AI-4V alloy. The article examines the product applications of titanium alloy castings. The tensile properties, standard industry specifications, and chemical compositions of various titanium alloy castings are tabulated.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003792
EISBN: 978-1-62708-177-1
... 2 O 2 Etch immediately after polishing, immerse, and swab 2–4 min Wrought/forged material Titanium and titanium alloys 10 mL HF 5 mL HNO 3 85 mL H 2 O Immerse 5–30 s General purpose 1 mL HF 200 mL H 2 O Immerse up to 5 s Stains alpha phase, alpha case (a) Ammonium persulfate...
Abstract
Metallography plays a significant role in the quality control of metals and alloys used in the manufacture of implantable surgical devices. This article provides information and data on metallographic techniques along with images showing the microstructure of biomedical orthopedic alloys, including stainless steels, cobalt-base alloys, titanium and titanium alloys, porous coatings, and emerging materials.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001082
EISBN: 978-1-62708-162-7
... shape cost advantages. The term castings often connotes products with properties generally inferior to wrought products. This is not true with titanium cast parts. They are generally comparable to wrought products in all respects and quite often superior. Properties associated with crack propagation...
Abstract
The combination of high strength-to-weight ratio, excellent mechanical properties, and corrosion resistance makes titanium the best material choice for many critical applications. This article commences with a description of the historical perspective of titanium casting technology. It discusses the various types of molding methods, namely, rammed graphite molding, and lost-wax investment molding. The article provides information on the casting design, melting, and pouring practices, and describes the microstructure, hot isostatic pressing, heat treatment, and mechanical properties of Ti-6AI-4V alloy. It also talks about the chemical milling and weld repair, and describes the product applications of titanium alloy castings. Tensile properties, standard industry specifications, and chemical compositions of various titanium alloy castings are tabulated.
Image
Published: 31 October 2011
Fig. 9 (a) Transmission electron microscopy image of titanium/steel interface. Titanium and steel both exhibit wrought grain structures on either side of a narrow interface region (∼200 nm wide). (b) Titanium and steel compositions across the interface region
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004003
EISBN: 978-1-62708-185-6
... also provides enhanced workability and superplasticity in these two-phase titanium materials. Ultrasonic inspectability of wrought titanium material has also been reported to improve with the refinement of the primary-alpha grain size. Refinement of the alpha-beta microstructure during the early...
Abstract
The thermomechanical processing (TMP) of conventional and advanced nickel and titanium-base alloys is aimed at altering or enhancing one or more metallurgical features within the material and component. This article presents a number of examples of the TMP of nickel-base superalloys and titanium alloys. The TMP techniques include retained-strain processing, dual-microstructure processing, and dual-alloy processing. The article also describes the TMP of alpha-beta titanium alloys, including fine-grain processing, hybrid-structure processing, dual-microstructure processing, and dual-alloy processing. It concludes with a discussion on computer simulation of advanced TMP processes.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003331
EISBN: 978-1-62708-176-4
..., 60% cold worked 1558 226 703 102 Tungsten 1517 220 … … Molybdenum and its alloys 1448 210 565 82 Titanium and its alloys 1317 191 186 27 Carbon steels, wrought; normalized, quenched and tempered 1296 188 400 58 Low-alloy carburizing steels; wrought, quenched...
Abstract
This article is a comprehensive collection of tables that list the values for hardness of plastics, rubber, elastomers, and metals. The tables also list the tensile yield strength and tensile modulus of metals and plastics at room temperature. A comparison of various engineering materials, on the basis of tensile strength, is also provided.
Image
Published: 01 December 2008
Fig. 4 The effect of elements dissolved in liquid aluminum, as opposed to solid particulate compounds, on the grain size is shown by means of the growth restriction factor. Wrought aluminum compositions are generally to the left of the minimum in the curve and exhibit a decrease in grain size
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003192
EISBN: 978-1-62708-199-3
... steels, wrought Cast irons—gray, ductile, and malleable Aluminum alloys, wrought and cast Titanium alloys, wrought Nickel-base, high-temperature alloys, wrought and cast. Turning, free-machining low-carbon steels, wrought Table 1 Turning, free-machining low-carbon steels, wrought...
Abstract
This article is a comprehensive collection of machining data, presented in tables, covering most of the commonly used machining operations including turning, face milling, end milling (peripheral), drilling, reaming, and tapping of several materials. It provides starting recommendations for the range of speeds and feeds for various machining operations, parameters for the selection of tool geometry, and guidelines on the selection and identification of cutting fluids.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001049
EISBN: 978-1-62708-161-0
..., consolidation method, mechanical properties and surface stability of wrought nickel alloys. Vacuum melting processes are a necessity for many nickel- and iron-nickel-base alloys because of the presence of aluminum and titanium as solutes. Cobalt-base alloys do not usually contain these elements and may...
Abstract
This article focuses on the properties of conventional wrought superalloys based on nickel, iron, and cobalt, as well as on the properties of alloys produced from powder. The powder metallurgy (P/M) category includes alloys that were originally developed as casting alloys; new alloy compositions developed specifically to benefit from powder processing; and oxide dispersion strengthened alloys (particularly those produced by mechanical alloying). The article discusses some of the applications of superalloys and emphazises the interplay between chemical composition, microstructure, consolidation method, mechanical properties and surface stability of wrought nickel alloys. Vacuum melting processes are a necessity for many nickel- and iron-nickel-base alloys because of the presence of aluminum and titanium as solutes. Cobalt-base alloys do not usually contain these elements and may be melted in air. An appendix to this article presents the property data and corresponding information on a family of cobalt-chromium-tungsten-carbon alloys that use P/M processing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003082
EISBN: 978-1-62708-199-3
... HZ32A 648 1198 Wrought alloys AZ31B 630 1170 AZ80A 610 1130 HK31A 651 1204 ZK60A 635 1175 Titanium and titanium alloys Unalloyed titanium ASTM grade 1 1683 3063 ASTM grade 2 1704 3100 ASTM grade 4 1670 3038 Ti-0.2Pd 1704 3100 Ti-5Al...
Abstract
This article contains tables that present engineering data for the following metals and their alloys: aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, zinc, precious metals, permanent magnet materials, pure metals, rare earth metals, and actinide metals. Data presented include density, linear thermal expansion, thermal conductivity, electrical conductivity, resistivity, and approximate melting temperature. The tables also present approximate equivalent hardness numbers for austenitic steels, nonaustenitic steels, austenitic stainless steel sheet, wrought aluminum products, wrought copper, and cartridge brass. The article lists conversion factors classified according to the quantity/property of interest.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006388
EISBN: 978-1-62708-192-4
... Abstract This article begins by describing the designations of cast and wrought aluminum alloys. It explains the effects of main alloying elements in aluminum alloys: boron, chromium, copper, iron, lithium, magnesium, manganese, nickel, phosphorus, silicon, sodium, strontium, titanium, and zinc...
Abstract
This article begins by describing the designations of cast and wrought aluminum alloys. It explains the effects of main alloying elements in aluminum alloys: boron, chromium, copper, iron, lithium, magnesium, manganese, nickel, phosphorus, silicon, sodium, strontium, titanium, and zinc. The article describes the microstructure of cast and wrought aluminum alloys and the various strengthening mechanisms, including solid solution, grain refinement, strain or work hardening, precipitation (or age) hardening, and dispersoid strengthening. The article explicates the tribological behavior of aluminum alloys, aluminum-base composites, and metal-matrix composites. It presents the effect of material-related parameters and external factors on wear behavior and transitions of aluminum-silicon alloys. The article also presents the most important factors affecting the dry sliding wear behavior of particle-reinforced aluminum-base composites against a steel counterface.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals. thermal conductivity aluminum aluminum alloys copper copper alloys iron iron alloys lead lead alloys magnesium magnesium alloys nickel nickel alloys tin tin alloys titanium titanium...
Abstract
This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003247
EISBN: 978-1-62708-199-3
... Abstract This article describes the metallographic technique for nonferrous metals and special-purpose alloys. These include aluminum alloys, copper and copper alloys, lead and lead alloys, magnesium alloys, nickel and nickel alloys, magnetic alloys, tin and tin alloys, titanium and titanium...
Abstract
This article describes the metallographic technique for nonferrous metals and special-purpose alloys. These include aluminum alloys, copper and copper alloys, lead and lead alloys, magnesium alloys, nickel and nickel alloys, magnetic alloys, tin and tin alloys, titanium and titanium alloys, refractory metals and alloys, zinc and zinc alloys, and wrought heat-resisting alloys. The preparation of specimens for metallographic technique includes operations such as sectioning, mounting, grinding, polishing, and etching of nonferrous metals and alloys. The article contains tables that list the etchants for macroscopic examination and microscopic examination of nonferrous metals and special-purpose alloys.
1