1-20 of 479 Search Results for

wrought magnesium alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 1996
Fig. 9 Data comparing similar cast and wrought magnesium alloys during long-term stress-corrosion cracking (SCC). Long-term rural-atmosphere SCC data compare similar-composition AZ61 sheet, extruded AZ61, and sand-cast AZ63. Although there is a great deal of scatter in these data, all three More
Image
Published: 01 December 2004
Fig. 43 Sections of a wrought magnesium alloy prepared by a modified procedure using a suspension of a diamond abrasive for polishing. (a) Hot extruded tube. Etched in a picric acid-acetic acid-ethanol reagent. Viewed in polarized light. 100×. (b) Compressed uniaxially at 200 °C. Etched More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003138
EISBN: 978-1-62708-199-3
... describes alloy and temper designations of cast and wrought magnesium alloys. The role of mechanical properties and fabrication characteristics in selection of product forms for structural applications is covered. The article explores the use of magnesium alloys as a substitution for heavier metals...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002412
EISBN: 978-1-62708-193-1
... and approximately 33% that of aluminum. Because of this low density, both cast and wrought magnesium alloys ( Tables 1 and 2 ) have been developed for a wide variety of structural applications in which low weight is important, if not a requirement. In this context, this article briefly summarizes the fatigue...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006254
EISBN: 978-1-62708-169-6
... on these and other elements can be found in the literature. See Ref 5 for a comprehensive review. Types of Heat Treatment The heat treatments commonly used for various magnesium alloys, both cast and wrought, are indicated by temper designations in Table 2 . Further information on heat treatments can...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001074
EISBN: 978-1-62708-162-7
... Abstract Magnesium and magnesium alloys are used in a wide variety of structural and nonstructural applications. This article provides information on selection and application of magnesium and magnesium alloys, mainly, casting alloys and wrought alloys. It also provides tabulated data...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003998
EISBN: 978-1-62708-185-6
... are predominantly in the form of castings (high-pressure die castings, in particular). Wrought magnesium applications (including sheet, extrusions, and forgings) comprise only about 1% of the total magnesium market. Forging alloys are primarily produced from three major alloy groups: those containing primarily...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... magnesium intensifies precipitation hardening with CuAl 2 (in the 2 xxx and 2 xx.x alloy series) Al-Mg-Si systems with strengthening from Mg 2 Si (6 xxx wrought alloys and some alloys in the 4 xxx and 4 xx.x alloy series) Al-Zn-Mg systems, with strengthening from MgZn 2 (alloys in the 7 xxx...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003774
EISBN: 978-1-62708-177-1
.... Magnesium alloys also can be classified broadly into three categories depending on the type of processing to which they will be subjected: sand and gravity or low-pressure die (permanent mold) casting alloys; high-pressure die casting alloys; and wrought alloys. The nominal compositions and processing...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006535
EISBN: 978-1-62708-207-5
..., copper, zinc, and iron content reduce hydrogen solubility, while magnesium, titanium, and especially lithium (in wrought alloys) increase hydrogen solubility. Much of the following material in this section regarding measurement of hydrogen and removal techniques applies to both shape and wrought...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006707
EISBN: 978-1-62708-210-5
...-hardenable alloy. Magnesium is considerably more effective than manganese as a hardener, approximately 0.8% Mg being equal to 1.25% Mn, and it can be added in considerably higher quantities. The solubility of magnesium in aluminum is nearly 14%, but the practical limit in wrought products is 5 to 6...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... Abstract This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003331
EISBN: 978-1-62708-176-4
... 105 28 Zinc die-casting alloys 91 82 Silver 90 26 Magnesium alloys, wrought 82 46 Magnesium alloys, cast 80 50 Aluminum alloys, 3000 series 77 28 Rare earths 77 17 Gold 66 25 Aluminum alloys, 1000 series 44 19 Tin and its alloys 29 5 Lead and its alloys...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005144
EISBN: 978-1-62708-186-3
... temperatures and times for various wrought magnesium alloys. The times given indicate the maximum time the alloy can be held at temperature without adversely affecting mechanical properties. Maximum forming temperatures and times for wrought magnesium alloys Table 6 Maximum forming temperatures...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003122
EISBN: 978-1-62708-199-3
... Abstract This article describes the systems for designating the aluminum and aluminum alloys that incorporate the product forms (wrought, casting or foundry ingots) and its respective temper for strain-hardened alloys, heat-treatable alloys and annealed alloys. All these systems are covered...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001075
EISBN: 978-1-62708-162-7
... Abstract This article is a compilation of property data for standard grades of wrought magnesium and cast magnesium alloys. Data are provided for mechanical, physical, thermal, and electrical properties. Valuable information is provided regarding the applications, chemical compositions...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003124
EISBN: 978-1-62708-199-3
..., but the dispersoids aid in grain size control after solution heat treatment. Magnesium The aluminum-magnesium system is the basis for the wrought 5 xxx and cast 5 xx.x non-heat-treatable aluminum alloys, which provide excellent combinations of strength and corrosion resistance by solid-solution strengthening...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003204
EISBN: 978-1-62708-199-3
... of aluminum alloys, copper alloys, magnesium alloys, nickel and nickel alloys, and titanium and titanium alloys and its product forms. aluminum alloys copper alloys heat treating magnesium alloys nickel nickel alloys titanium titanium alloys Heat Treating of Aluminum Alloys HEAT TREATING...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
.... Effects on strength are minor, but the dispersoids aid in grain size control after solution heat treatment. Magnesium The aluminum-magnesium system is the basis for the wrought 5 xxx and cast 5 xx.x non-heat-treatable aluminum alloys, which provide excellent combinations of strength and corrosion...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006503
EISBN: 978-1-62708-207-5
.... Most of the alloys in which chromium is present also contain magnesium, so that during solid-state heating they form Al 2 Mg 2 Cr, which also has very low-equilibrium solid solubility. Smelter-grade primary metal, whether in ingot or wrought ­product form, contains a small volume fraction of second...