1-20 of 310 Search Results for

workability

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009005
EISBN: 978-1-62708-185-6
... illustration of relative workability of cast metals and wrought and recrystallized metals at cold, warm, and hot working temperatures. The melting point (or solidus temperature) is denoted as MP c (cast metals) or MP w (wrought and recrystallized metals). Fig. 2 Specimens for the wedge test. (Top...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009006
EISBN: 978-1-62708-185-6
... Centerbursts in sectional, cold extruded steel bars. Courtesy of Bethlehem Steel Corporation Fig. 6 Workability criteria for centerbursting in aluminum alloy 2024 based on a maximum tensile stress-strain energy criterion. Source: Ref 13 Fig. 7 Generic extrusion limit diagram. Source: Ref...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009007
EISBN: 978-1-62708-185-6
... Abstract This article discusses a number of workability tests that are especially applicable to the forging process. The primary tests for workability are those for which the stress state is well known and controlled. The article provides information on the tension test, torsion test...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... Abstract This article focuses on the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. It informs that workability depends on the local conditions of stress, strain, strain rate, and temperature in combination with material factors...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... before cracking or fracture occurs. The article reviews the process variables that influence the degree of workability and summarizes the mathematical relationships that describe the occurrence of room-temperature ductile fracture under workability conditions. It discusses the most common situations...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009004
EISBN: 978-1-62708-185-6
... Abstract This article focuses on the effects of mechanical plasticity on workability; that is, process control of localized stress and strain conditions to enhance workability. It describes the nature of local stress and strain states in bulk forming processes, leading to a classification...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009011
EISBN: 978-1-62708-185-6
... Abstract This article discusses the equipment design, procedures, experimental considerations, and interpretation of the torsion tests used to establish workability. It describes the application of torsion testing to obtain flow-stress data and to gage fracture-controlled workability and flow...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004030
EISBN: 978-1-62708-185-6
... Abstract This article contains nine tables that present useful formulas for deformation analysis and workability testing. The tables present formulas for effective stress, strain, and strain rate in arbitrary coordinates, principal, compression and tension testing of isotropic material...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005181
EISBN: 978-1-62708-186-3
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003258
EISBN: 978-1-62708-176-4
... Abstract An important activity in metalworking facilities is the testing of raw materials for characteristics that ensure the integrity and quality of the products made. This article reviews the common material parameters that can have a direct or indirect influence on workability and product...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003998
EISBN: 978-1-62708-185-6
... magnesium alloy ZK60A shown in the (a) as-forged and (b) forged and finish machined conditions Abstract This article discusses the forging processes and equipment and forging practice associated with the forging of magnesium alloys. It describes the workability of magnesium alloys. The article...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009012
EISBN: 978-1-62708-185-6
... Abstract This article summarizes the types of hot working simulation tests such as hot tension, compression, and torsion testing used in the assessment of workability. It illustrates the use of hot torsion testing for the optimization of hot working processes. The article concludes...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002455
EISBN: 978-1-62708-194-8
... in the part to be formed. Failure will occur if the point is above the forming limit diagram for the sheet metal. Source: Ref 15 Fig. 5 Schematic workability diagram for bulk deformation processes. Strain path a would lead to failure for material A. Both strain paths can be used for the successful...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002485
EISBN: 978-1-62708-194-8
... considerations in applying a deformation process. Some fundamental aspects of plastic flow, flow stress, cold and hot working, workability, and formability are presented. The article provides information on free-surface cracking, central burst or chevron cracking, and cracking on die contact surface, as well...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001032
EISBN: 978-1-62708-161-0
... , Weld. J. , Vol 34 , April 1955 , p 183 – 196 s 3. Luton M.J. , Hot Torsion Testing , in Workability Testing Techniques , Dieter G.E. , Ed., American Society for Metals , 1984 , p 95 – 133 4. Woodall S.M. and Schey J.A. , Development of New Workability Test...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009008
EISBN: 978-1-62708-185-6
... Abstract A cylindrical specimen compressed with friction at the die surfaces does not remain cylindrical in shape but becomes bulged or barreled. Tensile stresses associated with the bulging surface make the upset test a candidate for workability testing. This article discusses test-specimen...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005144
EISBN: 978-1-62708-186-3
... Abstract In terms of forming, magnesium alloys are much more workable at elevated temperatures due to their hexagonal crystal structures. This article describes the deformation mechanisms of magnesium and provides information on the hot and cold forming processes of magnesium alloys...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006693
EISBN: 978-1-62708-210-5
... Abstract Alloy 5005, available as architectural sheet and components, was introduced in 1935 to fill the need of the mobile-home industry for a lightweight, inexpensive, workable, corrosion-resistant siding material. This datasheet provides information on composition limits, mill product...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003089
EISBN: 978-1-62708-199-3
... of the workability parameter, β Table 6 Evaluation of the workability parameter, β Test Principal stresses Effective stress Mean stress β Strain-to-fracture measurement Tension σ 1 :σ 2 = σ 3 = 0 σ 1 σ 1 /3 1.0 ε f = ln ( A 0 / A n ) at necking Torsion σ 1 = −σ 2 ; σ 3 = 0...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... formed parts cracking cracks forging grain flow heat treatment hydrogen content imperfections ingot pipe laminations metalworking nonmetallic inclusions pits porosity scabs seams sheet metal forming unmelted electrodes workability WROUGHT FORMS are produced by a wide variety...