Skip Nav Destination
Close Modal
Search Results for
winds
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 516 Search Results for
winds
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003039
EISBN: 978-1-62708-200-6
... Abstract Filament winding is a process that allows the precise lay-down of continuous reinforcement in predescribed patterns at a high rate of speed. This article discusses the filament winding process and includes a comparison to other compacting and curing processes. The article describes...
Abstract
Filament winding is a process that allows the precise lay-down of continuous reinforcement in predescribed patterns at a high rate of speed. This article discusses the filament winding process and includes a comparison to other compacting and curing processes. The article describes design factors, and techniques to produce aerodynamic surfaces, improve surface smoothness, and avoid slipping and bridging of filament. The article discusses tooling and the equipment used in the filament winding process, namely, mandrel design, winding machines, tensioners, and ovens.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003416
EISBN: 978-1-62708-195-5
... Abstract Filament winding is a process for fabricating a composite structure in which continuous reinforcements, either previously impregnated with a matrix material or impregnated during winding, is placed over a rotating form or mandrel in a prescribed way to meet certain stress conditions...
Abstract
Filament winding is a process for fabricating a composite structure in which continuous reinforcements, either previously impregnated with a matrix material or impregnated during winding, is placed over a rotating form or mandrel in a prescribed way to meet certain stress conditions. This article describes the advancements in filament winding and lists the advantages and disadvantages of filament winding. It discusses the effects of fiber tension in filament winding and the selection of fibers, resins, and materials for filament winding. The article emphasizes the three basic filament-winding patterns, such as helical, polar, and hoop. It presents information on the applications of filament winding, including rocket motors, natural gas vehicle (NGV) tanks, and sporting goods. The article presents recommendations for the basic design guidelines for filament-winding design/manufacturing process and concludes with a discussion on fabrication recommendations.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007019
EISBN: 978-1-62708-439-0
.... This article provides a discussion of the opportunities, challenges, and example use cases of AM in the nuclear and wind energy sectors. additive manufacturing atomic interaction light elements nuclear energy wind energy Additive Manufacturing for Nuclear Energy Applications Nuclear energy...
Abstract
Nuclear energy harnesses the power of atomic interactions, whether through the fission of large nuclei or the fusion of light elements. Additive manufacturing (AM) can play several roles in this sector and is actively being researched and applied, although challenges remain. This article provides a discussion of the opportunities, challenges, and example use cases of AM in the nuclear and wind energy sectors.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006354
EISBN: 978-1-62708-192-4
... Abstract This article is concerned with gear tooth failures influenced by friction, lubrication, and wear, and especially those failure modes that occur in wind-turbine components. It provides a detailed discussion on wear (including adhesion, abrasion, polishing, fretting, and electrical...
Abstract
This article is concerned with gear tooth failures influenced by friction, lubrication, and wear, and especially those failure modes that occur in wind-turbine components. It provides a detailed discussion on wear (including adhesion, abrasion, polishing, fretting, and electrical discharge), scuffing, and Hertzian fatigue (including macropitting and micropitting). Details for obtaining high lubricant specific film thickness are presented. The article describes the selection criteria for lubricants, such as oil, grease, adhesive open gear lubricant, and solid lubricants. It discusses the applications of oil and gear lubricants and the types of standardized gear tests. The article presents some recommendations for selecting lubricants and lubricant viscosity for enclosed gear. It provides some examples of failure modes that commonly occur on gears and bearings in wind turbine gearboxes.
Image
Published: 01 January 2001
Image
Published: 01 August 2013
Fig. 1 Electric arc wire spraying to coat a wind turbine tower segment with zinc/aluminum alloy. Courtesy of Muehlhan AG, Hamburg, Germany
More
Image
Published: 01 August 2013
Fig. 2 Gear parts for a wind turbine coated with stop-off paint (Condursal 0118) prior to case hardening
More
Image
in Design and Fabrication of Induction Coils for Heating Bars, Billets, and Slabs
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 12 Low-frequency coil design in which the induction coil winding is compressed between end plates using long rods with threads and nuts. Courtesy of Ajax Tocco Magnethermic
More
Image
in Design and Fabrication of Induction Coils for Heating Bars, Billets, and Slabs
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 13 Low-frequency coil design in which the induction coil winding is compressed between end plates
More
Image
Published: 09 June 2014
Fig. 12 Incorrect installation position due to prevailing wind causing recirculation of moist air. Courtesy of EVAPCO Inc.
More
Image
in Niobium-Titanium Superconductors
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 23 Cross sections of cable used in windings of a 0.04 m SSC bore dipole magnet. (a) 23-strand cable for inner winding. (b) 30-strand cable for outer winding. Courtesy of Lawrence Berkeley Laboratory
More
Image
Published: 01 January 2006
Fig. 3 Corrosion failure site in bottom layer of relay-coil winding
More
Image
in Guidelines for Maintenance Coating of Steel Structures in Pulp and Paper Mills
> Protective Organic Coatings
Published: 30 September 2015
Fig. 4 Coating failure, corrosion, and severe corrosion of a T-shaped wind brace
More
Image
in Guidelines for Maintenance Coating of Steel Structures in Pulp and Paper Mills
> Protective Organic Coatings
Published: 30 September 2015
Fig. 8 Properly recoated building wind girder in a paper machine building
More
Image
Published: 30 September 2014
Fig. 46 Control of heating patterns in two different regions of a workpiece by winding the turns in opposite directions. Source: Ref 12
More
Image
Published: 01 January 2000
Fig. 9 Schematic diagram of wind tunnel test rig. Source: Ref 16
More
Image
Published: 01 November 1995
Fig. 2 Typical fiber-resin applications. (a) Filament winding of pipe or rocket motor case. (b) Unidirectional tape laydown for aircraft panel. (c) Tape-wrapping cone for rocket motor nozzle. (d) Layup of fabric resin for boat hull. (e) Molding of hollow cylinder for rocket motor nozzle
More
Image
Published: 01 December 1998
Fig. 19 Mechanism for winding springs that have coils of varying diameters
More
Image
in Friction, Lubrication, and Wear of Gears and Wind-Turbine Components
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Fig. 7 Moderate adhesion on an intermediate pinion from a modern wind turbine. Source: Ref 1
More
1