Skip Nav Destination
Close Modal
By
ASM Committee on Material Requirements for Service Conditions, R. David Thomas, Jr., Bruno L. Alia, William R. Apblett, Robert G. Bartifay ...
Search Results for
william
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 602 Search Results for
william
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006013
EISBN: 978-1-62708-172-6
Abstract
This article focuses on marine coatings associated with protecting commercial and military vessels. It provides detailed information on the common issues and requirements encountered when coating ballast tanks, freeboard, topside, and decks of the vessel. The article describes the advent of ultra-high solids coatings technology, and reviews the marine-specific coatings such as antifouling and their mechanisms and common failure modes.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006011
EISBN: 978-1-62708-172-6
Abstract
Polyurethane is any polymer consisting of a chain of repeating organic units joined by urethane linkages. Polyurethane polymers are formed through step-growth polymerization by making a monomer containing at least two isocyanate functional groups to react with another monomer containing at least two hydroxyl (alcohol) groups. This article provides a detailed account of the protective coatings used in the building, infrastructure, and architectural markets. It focuses on the various types of polyurethane coatings used in these applications: moisture-cure and two-pack aromatic coatings as primers and topcoats, moisture-cure aromatic elastomeric high-build coatings, moisture-cure aliphatic topcoats, two-pack aliphatic polyurethane coatings as topcoats, and one- and two-pack polyurethane dispersion coatings as sealers and topcoats. It also includes a section on the health effects of isocyanates.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005939
EISBN: 978-1-62708-168-9
.... and Heuer A. , The Surface Hardening of Stainless Steel , Met. Trans. A , Vol 40 ( No. 8 ), 2009 , p 1767 10.1007/s11661-009-9904-3 14. Collins S. and Williams P. , Low-Temperature Colossal Supersaturation , Adv. Mater. Process. , Sept 2006 , p 32 – 33 15. Ihara...
Abstract
Low-temperature carburization hardens the surface of austenitic stainless steels through the diffusion of interstitial carbon without the formation of carbides. This article provides an overview on austenitic stainless steels and low-temperature carburization. It reviews the competing technologies and commercial application of low-temperature carburization. The article discusses several processing parameters, including activation of the surface, proper surface preparation, selection and condition of the alloy to be carburized, treatment temperature, and carburizing atmosphere for successful low-temperature carburization of austenitic stainless steels and other chromium-containing alloys. It describes the performance properties of the low-temperature carburized layer: fatigue resistance, wear resistance, erosion resistance, and corrosion resistance.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003602
EISBN: 978-1-62708-182-5
Abstract
This article describes the ideal performance of various low-temperature and high-temperature fuel cells that depends on the electrochemical reactions that occur between different fuels and oxygen. Low-temperature fuel cells, such as polymer electrolyte, alkaline, and phosphoric acid, and high-temperature fuel cells, such as molten carbonate and solid oxide, are discussed. The article contains tables that provide information on the evolution of cell-component technology for these fuel cells. It concludes with information on the advantages and limitations of the fuel cells.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006551
EISBN: 978-1-62708-290-7
Abstract
Material jetting (MJ) is a classification of additive manufacturing processes that involves the selective jetting and subsequent solidification of liquid droplets onto a substrate in a layerwise manner. This article focuses solely on MJ of polymers, providing a process overview and describing the functional characteristics that distinguish it from other AM technologies. It provides information on the properties and design considerations of both build and support materials. Process-related effects on final part properties and overall quality, as well as corresponding design considerations are also covered. The article also discusses the applications and future scope of polymer MJ systems.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001363
EISBN: 978-1-62708-173-3
Abstract
Resistance spot welding (RSW) is a process in which faying surfaces are joined in one or more spots by the heat generated by resistance to the flow of electric current through workpieces that are held together under force by electrodes. This article discusses the major advantages of spot welding and the three principal elements, such as electrical circuit, control circuit, and mechanical system, of RSW machines. It reviews the three basic types of RSW machines: pedestal-type welding machines, portable welding guns, and multiple spot welding machines. The article provides information on weldabilily of uncoated steels and zinc-coated steels, as well as aluminum alloys.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005838
EISBN: 978-1-62708-167-2
Abstract
This article provides a brief description of load conditions for single-shot heat treating, vertical scanning, and brazing and soldering. It discusses the various power components used in power supplies. These include capacitors, integrated power module, transformers, and various switching devices, namely, silicon-controlled rectifiers, insulated-gate bipolar transistors, and metal-oxide semiconductor field-effect transistors. The article also provides information on frequency-multiplication harmonic-induction power supplies, namely, push-pull and half-bridge inverters and full-bridge inverters. Series resonant and parallel resonant circuits and their tuning calculations associated with output networks are also discussed. The article describes the frequency range of simultaneous dual-frequency induction heating power supply, and discusses the advantages, applications, and technical background of independently controlled frequency and power (IFP) induction heating power supply. It concludes with a description of the developments in control systems for modern induction power supplies.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002423
EISBN: 978-1-62708-194-8
Abstract
This article discusses the various roles and responsibilities of materials engineers in a product realization organization and suggests different ways in which materials engineers may benefit their organization. It also provides a summary of the concepts discussed in the articles under the Section “The Role of the Materials Engineer in Design” in ASM Handbook, Volume 20: Materials Selection and Design.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002470
EISBN: 978-1-62708-194-8
Abstract
Fracture toughness is the ability of a material to withstand fracture in the presence of cracks. This article focuses on the use of fracture toughness as a parameter for engineering and design purposes. Both linear elastic and elastic-plastic fracture mechanics concepts are reviewed as they relate to fracture toughness and design process. The article explores the use of plane strain fracture toughness, crack-tip opening displacement, and the J-integral as the criteria for the design and safe operation of structures and mechanical components. It discusses the variables affecting fracture toughness, including yield strength, loading rate, temperature, and material thickness. A summary of different fatigue and fracture mechanics design philosophies and their relationship with fracture toughness is provided. The article concludes with information on the examples of fracture toughness in design.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005670
EISBN: 978-1-62708-198-6
Abstract
This article focuses on the use of noble and precious metals for biomedical applications. These include gold, platinum, palladium, ruthenium, rhodium, iridium, and osmium. The physical and mechanical properties of noble and precious metals are presented in tables. A brief discussion on the ancient history of noble and precious metal use in dentistry is provided. The article discusses the use of direct gold dental filling materials, direct silver dental filling materials, traditional amalgam alloys, high-copper amalgam alloys, and gallium alloys in biomedical applications. It also provides information on gold coatings and iridium oxide coatings for stents.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007034
EISBN: 978-1-62708-387-4
... summarized by Pilchak and Williams ( Ref 31 ) and is worth reviewing in light of the recent rapid growth of additive manufacturing, in which attempts to avoid columnar grain growth by using nucleating agents will be attempted. While this approach met its historical demise due to agglomeration issues...
Abstract
This article presents a detailed discussion on the microstructures, physical metallurgy, classification, deformation behavior, and fracture modes of titanium alloys. It illustrates the effect of microstructure and texture on the fracture topography and fracture behavior of titanium alloys with a variety of relevant examples.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001403
EISBN: 978-1-62708-173-3
Abstract
The selection of materials for welded construction applications involves a number of considerations, including design codes and specifications. Mobile structures have quite different materials requirements for weight, durability, and safety than stationary structures, which are built to last for many years. This article provides an overview of the service conditions. It offers guidance for material selection applications, including bridges and buildings, pressure vessels and piping, shipbuilding and offshore structures, aerospace systems, machinery and equipment, automobiles, railroad systems, and sheet metal. Material properties and welding processes that may be significant in meeting design goals are also described.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... 130 12. Babecki A.J. , Some Failure Problems in Spacecraft and Space Boosters , Proc. William Hunt Eisenman Conf. on Failure Analysis , American Society for Metals , 1968 13. Glackin J. , “Corrosion Resistance Properties and Susceptibility to Stress Alloying of Tin Plated...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid metal induced embrittlement (LMIE). It describes the unique features that assist in arriving at a clear conclusion whether SMIE or LMIE is the most probable cause of the problem. The article briefly reviews some commercial alloy systems where LMIE or SMIE has been documented. It also provides some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005276
EISBN: 978-1-62708-187-0
Abstract
Vacuum high-pressure die casting uses a vacuum pump to evacuate the air and gases from the die casting die cavity and metal delivery system before and during the injection of molten metal. This article describes the conventional die casting, vacuum die casting, and high-pressure die casting processes.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005197
EISBN: 978-1-62708-187-0
Abstract
In high-iron-tonnage operations, the cupola remains the most efficient source of continuous high volumes of iron needed to satisfy high production foundries or the multiple casting machines of centrifugal pipe producers. This article explores successful improvement technologies in cupola equipment, including preheated air blast, recuperative hot blast systems, and duplex electric holders. It discusses the shell, intermittent or continuous tapping, tuyere and blower systems, refractory lining, water-cooled cupolas, emission-control systems, and storage and handling of the charge materials. The article provides a discussion on the control tests for cupola, including the chill test and mechanical test. It concludes with information on specialized cupolas such as the cokeless cupola and the plasma-fired cupola.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005266
EISBN: 978-1-62708-187-0
Abstract
This article provides a comprehensive discussion on die casting alloy types and casting processes used in high-pressure die casting. It presents the advantages and disadvantages of high-pressure die casting and describes the product design for the process. The article concludes with information on the metal injection process of high-pressure die casting.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006009
EISBN: 978-1-62708-172-6
... were used with permission from Technology Publishing Company: William Slama, “Polyester and Vinyl Ester Coatings,” Journal of Protective Coatings and Linings , May 1996. References References 1. Slama W. , Polyester and Vinyl Ester Coatings , J. Prot. Coatings Linings , Technology...
Abstract
This article provides a discussion on polyester coating applications such as powder coatings, can coatings, and automotive paints. It includes an overview, structure, properties, and benefits of vinyl ester resins. The article discusses the additives for both unsaturated polyester and vinyl ester coatings, namely, curing systems, thixotropic agents and fillers. It exemplifies polyester and vinyl ester coating, lining and flooring systems that are used for top-to-bottom protection of industrial plants and equipment. The article also highlights the concerns to be addressed when using polyesters and vinyl esters.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003775
EISBN: 978-1-62708-177-1
Abstract
This article explains how to prepare nickel-base alloys for metallographic examination and identifies related processing and imaging challenges. It describes sectioning, mounting, grinding, and polishing procedures along with alternative electropolishing processes. It also provides information on etching and examines the microstructure of Nickel 200, Nickel 270, Duranickel 301, Monel 400, Monel R-405, Monel K-500, and other nickel alloys.
1