Skip Nav Destination
Close Modal
Search Results for
welding torch
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 317 Search Results for
welding torch
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 31 October 2011
Image
Published: 31 October 2011
Fig. 2 Schematic of modern plasma gas metal arc welding torch with annular plasma arc welding electrode and additional (focusing) gas stream. Source: Ref 2
More
Image
Published: 01 December 1998
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001362
EISBN: 978-1-62708-173-3
... Abstract Plasma-metal inert gas (MIG) welding can be defined as a combination of plasma arc welding (PAW) and gas-metal arc welding (GMAW) within a single torch, where a filler wire is fed through the plasma nozzle orifice. This article describes the principles of operation and operating modes...
Abstract
Plasma-metal inert gas (MIG) welding can be defined as a combination of plasma arc welding (PAW) and gas-metal arc welding (GMAW) within a single torch, where a filler wire is fed through the plasma nozzle orifice. This article describes the principles of operation and operating modes of plasma-MIG welding. It discusses the advantages and disadvantages of the plasma-MIG process. The article describes the components, including power sources and welding torches, of equipment used for the plasma-MIG process. It provides information on inspection and weld quality control and troubleshooting techniques. The article concludes with a discussion on the applications of the plasma-MIG process.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005582
EISBN: 978-1-62708-174-0
..., current and operating modes, advantages, disadvantages, and applications of PAW. It discusses the personnel and equipment requirements, as well as the joints used in the process. The power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases...
Abstract
Plasma arc welding (PAW) can be defined as a gas-shielded arc welding process where the coalescence of metals is achieved via the heat transferred by an arc that is created between a tungsten electrode and a workpiece. This article focuses on the operating principles and procedures, current and operating modes, advantages, disadvantages, and applications of PAW. It discusses the personnel and equipment requirements, as well as the joints used in the process. The power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases are also reviewed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001357
EISBN: 978-1-62708-173-3
... of the PAW process, as well as the advantages and disadvantages. It describes the components of a basic PAW system, namely the power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases. The article provides information on the applications...
Abstract
Plasma arc welding (PAW) can be defined as a gas-shielded arc welding process where the coalescence of metals is achieved via the heat transferred by an arc that is created between a tungsten electrode and a workpiece. This article discusses the melt-in mode and the keyhole mode of the PAW process, as well as the advantages and disadvantages. It describes the components of a basic PAW system, namely the power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases. The article provides information on the applications of the PAW process and discusses the typical components and joints used. It concludes with information on personnel requirements and safety issues.
Image
Published: 31 October 2011
Image
Published: 01 November 1995
Fig. 19 Schematic of hot-gas welding, showing the correct position of torch and filler rod for different thermoplastics. PE, polyethylene; PP, polypropylene; PVC, polyvinyl chloride. Source: Ref 24
More
Image
Published: 01 January 1993
Fig. 4 Schematic of hot-gas welding, showing the correct position of torch and filler rod for different thermoplastics. Source: Ref 19
More
Image
Published: 01 January 1993
Fig. 4 Schematic showing cross-sectional view of a spiral equal-pressure mixer. (1) Welding torch head. (2) Oxygen tube from torch head. (3) Acetylene (fuel gas) passages from torch head. (4) Nozzle nut. (5) Welding nozzle cone end. (6) Spiral in welding nozzle. (7) Mixer orifice and mixing
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
.... It schematically illustrates the key components of a GTAW manual torch. The article describes the process parameters, such as welding current, shielding gases, and filler metal. It discusses the GTAW process variations in terms of manual welding, mechanized welding, narrow groove welding, and automatic welding...
Abstract
The melting temperature necessary to weld materials in the gas-tungsten arc welding (GTAW) process is obtained by maintaining an arc between a tungsten alloy electrode and a workpiece. This article discusses the advantages and limitations and applications of the GTAW process. It schematically illustrates the key components of a GTAW manual torch. The article describes the process parameters, such as welding current, shielding gases, and filler metal. It discusses the GTAW process variations in terms of manual welding, mechanized welding, narrow groove welding, and automatic welding.
Image
Published: 01 January 1993
Fig. 10 Schematic of a moving weld pool showing the relationship between velocity of travel of welding torch, V , and the rate of solidification, R , at selected points along weld pool boundary. Source: Ref 9
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001372
EISBN: 978-1-62708-173-3
..., and are caused to flow together and solidify without the application of pressure to the parts being joined. The most important source of heat for OFW is the oxyacetylene welding (OAW) torch. The simplest and most frequently used OFW system consists of compressed gas cylinders, gas pressure regulators, hoses...
Abstract
Oxyfuel gas welding (OFW) is a manual process in which the metal surfaces to be joined are melted progressively by heat from a gas flame, with or without a filler metal. This article discusses the capabilities, advantages, and limitations of OFW. It describes the role of gases, such as oxygen, acetylene, hydrogen, natural gas, propane, and proprietary gases, in OFW. The article discusses the important elements of an OFW system, such as gas storage facilities, pressure regulators, hoses, torches, related safety devices, and accessories. It describes the sequence for setting up a positive-pressure welding outfit. The article provides information on forehand welding and backhand welding, as well as various joints used. It concludes with a discussion on repairs and alterations, as well as the safety aspects.
Image
Published: 01 January 1993
Fig. 3 Schematic showing cross-sectional views of gas passages in a typical oxyfuel gas welding torch
More
Image
Published: 31 October 2011
Fig. 16 Schematic showing exploded view of key components comprising a typical gas tungsten arc manual welding torch
More
Image
Published: 30 November 2018
Fig. 14 Schematic showing exploded view of key components comprising a typical gas tungsten arc manual welding torch
More
Image
Published: 01 January 1993
Fig. 6 Flame conditions obtained as oxygen flow rate increases from zero to an excess of oxygen in an oxyacetylene welding torch
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001470
EISBN: 978-1-62708-173-3
... the initial path is generated, it can then be sent electronically to the robot simulation model for execution. The simulation environment on the computer should include an animated robot and its environment. Objects that the robot could collide with, such as the welding torch, positioning table, parts...
Abstract
Efforts in improving the efficiency of automated equipment lead to combining automatic joining equipment with a modem computer technique eventually known as artificial intelligence (intelligent automation) that usually includes an off-line planning system and a real-time adaptive control system connected through a computer communications interface. This article focuses on the application of intelligent automation system to arc welding, called WELDEXCELL, and other joining processes. An outline of the interface between off-line planners and real-time control systems is also provided.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005598
EISBN: 978-1-62708-174-0
... Abstract Plasma gas metal arc welding (GMAW) is a process that can be defined as a combination of plasma arc welding (PAW) and GMAW within a single torch, where a filler wire is fed through the plasma nozzle orifice. Although originally referred to as plasma-MIG welding, the preferred term...
Abstract
Plasma gas metal arc welding (GMAW) is a process that can be defined as a combination of plasma arc welding (PAW) and GMAW within a single torch, where a filler wire is fed through the plasma nozzle orifice. Although originally referred to as plasma-MIG welding, the preferred term is plasma-GMAW. This article provides a detailed discussion on the operating procedures, advantages, disadvantages, and applications of GMAW and describes the equipment used in the plasma-GMAW.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... by heat from a gas flame, with or without filler metal, and are caused to flow together and solidify without the application of pressure to the parts being joined. The most important source of heat for OFW is the oxyacetylene welding (OAW) torch. The simplest and most frequently used OFW system...
Abstract
This article discusses the principles of operation, equipment needed, applications, and advantages and disadvantages of various fusion welding processes, namely, oxyfuel gas welding, electron beam welding, stud welding, laser beam welding, percussion welding, high-frequency welding, and thermite welding.
1