1-20 of 317 Search Results for

welding torch

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 31 October 2011
Fig. 7 Fume-extracting gas metal arc welding torch. Courtesy of Abicor Binzel More
Image
Published: 31 October 2011
Fig. 2 Schematic of modern plasma gas metal arc welding torch with annular plasma arc welding electrode and additional (focusing) gas stream. Source: Ref 2 More
Image
Published: 01 December 1998
Fig. 2 Oxyfuel gas welding torch More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001362
EISBN: 978-1-62708-173-3
... Abstract Plasma-metal inert gas (MIG) welding can be defined as a combination of plasma arc welding (PAW) and gas-metal arc welding (GMAW) within a single torch, where a filler wire is fed through the plasma nozzle orifice. This article describes the principles of operation and operating modes...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005582
EISBN: 978-1-62708-174-0
..., current and operating modes, advantages, disadvantages, and applications of PAW. It discusses the personnel and equipment requirements, as well as the joints used in the process. The power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001357
EISBN: 978-1-62708-173-3
... of the PAW process, as well as the advantages and disadvantages. It describes the components of a basic PAW system, namely the power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases. The article provides information on the applications...
Image
Published: 31 October 2011
Fig. 2 Gas tungsten arc welding water-cooled torch More
Image
Published: 01 November 1995
Fig. 19 Schematic of hot-gas welding, showing the correct position of torch and filler rod for different thermoplastics. PE, polyethylene; PP, polypropylene; PVC, polyvinyl chloride. Source: Ref 24 More
Image
Published: 01 January 1993
Fig. 4 Schematic of hot-gas welding, showing the correct position of torch and filler rod for different thermoplastics. Source: Ref 19 More
Image
Published: 01 January 1993
Fig. 4 Schematic showing cross-sectional view of a spiral equal-pressure mixer. (1) Welding torch head. (2) Oxygen tube from torch head. (3) Acetylene (fuel gas) passages from torch head. (4) Nozzle nut. (5) Welding nozzle cone end. (6) Spiral in welding nozzle. (7) Mixer orifice and mixing More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
.... It schematically illustrates the key components of a GTAW manual torch. The article describes the process parameters, such as welding current, shielding gases, and filler metal. It discusses the GTAW process variations in terms of manual welding, mechanized welding, narrow groove welding, and automatic welding...
Image
Published: 01 January 1993
Fig. 10 Schematic of a moving weld pool showing the relationship between velocity of travel of welding torch, V , and the rate of solidification, R , at selected points along weld pool boundary. Source: Ref 9 More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001372
EISBN: 978-1-62708-173-3
..., and are caused to flow together and solidify without the application of pressure to the parts being joined. The most important source of heat for OFW is the oxyacetylene welding (OAW) torch. The simplest and most frequently used OFW system consists of compressed gas cylinders, gas pressure regulators, hoses...
Image
Published: 01 January 1993
Fig. 3 Schematic showing cross-sectional views of gas passages in a typical oxyfuel gas welding torch More
Image
Published: 31 October 2011
Fig. 16 Schematic showing exploded view of key components comprising a typical gas tungsten arc manual welding torch More
Image
Published: 30 November 2018
Fig. 14 Schematic showing exploded view of key components comprising a typical gas tungsten arc manual welding torch More
Image
Published: 01 January 1993
Fig. 6 Flame conditions obtained as oxygen flow rate increases from zero to an excess of oxygen in an oxyacetylene welding torch More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001470
EISBN: 978-1-62708-173-3
... the initial path is generated, it can then be sent electronically to the robot simulation model for execution. The simulation environment on the computer should include an animated robot and its environment. Objects that the robot could collide with, such as the welding torch, positioning table, parts...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005598
EISBN: 978-1-62708-174-0
... Abstract Plasma gas metal arc welding (GMAW) is a process that can be defined as a combination of plasma arc welding (PAW) and GMAW within a single torch, where a filler wire is fed through the plasma nozzle orifice. Although originally referred to as plasma-MIG welding, the preferred term...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... by heat from a gas flame, with or without filler metal, and are caused to flow together and solidify without the application of pressure to the parts being joined. The most important source of heat for OFW is the oxyacetylene welding (OAW) torch. The simplest and most frequently used OFW system...